High-efficiency scene classification based on deep compressed-domain feature
- Author(s): Cheng Li 1, 2 ; Baojun Zhao 1, 2 ; Boya Zhao 1, 2 ; Wenzheng Wang 1, 2 ; Chenhui Duan 1, 2
-
-
View affiliations
-
Affiliations:
1:
Radar Research Lab, School of Information and Electronics , Beijing Institute of Technology , Beijing 100081 , People's Republic of China ;
2: Beijing Key laboratory of Embedded Real-time Information Processing Technology , Beijing Institute of technology , Beijing 100081 , People's Republic of China
-
Affiliations:
1:
Radar Research Lab, School of Information and Electronics , Beijing Institute of Technology , Beijing 100081 , People's Republic of China ;
- Source:
Volume 2019, Issue 19,
October
2019,
p.
6077 – 6080
DOI: 10.1049/joe.2019.0266 , Online ISSN 2051-3305

Full text loading...
Inspec keywords: data compression; image classification; convolutional neural nets; geophysical image processing; image representation; image coding; feature extraction; remote sensing
Other keywords: body information; compressed-domain convolutional neural network; remote sensing image scene classification; effective classification; high classification accuracy; computing resources; header information; raw JPEG2000 codestream; deep feature representation framework; in-orbit processing capacity; UAV time-sensitive application; RSI; satellite application; high-level representation; compressed-domain feature; high-efficiency scene classification
Subjects: Geography and cartography computing; Computer vision and image processing techniques; Data and information; acquisition, processing, storage and dissemination in geophysics; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Neural computing techniques; Image recognition; Image and video coding; Geophysical techniques and equipment
References
-
-
1)
-
12. Penatti, O.A., Nogueira, K., dos Santos, J.A.: ‘Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?’. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. Workshops, Boston, MA, USA, 2015, pp. 44–51.
-
-
2)
-
9. Zhang, Y., Zheng, X., Liu, G., et al: ‘Semi-supervised manifold learning based multigraph fusion for highresolution remote sensing image classification’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (2), pp. 464–468.
-
-
3)
-
6. Cheng, G., Han, J., Guo, L., et al: ‘Object detection in remote sensing imagery using a discriminatively trained mixture model’, ISPRS J. Photogramm. Remote Sens., 2013, 85, pp. 32–43.
-
-
4)
-
8. Dai, D., Yang, W.: ‘Satellite image classification via two-layer sparse coding with biased image representation’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (1), pp. 173–176.
-
-
5)
-
5. Yang, Y., Newsam, S.: ‘Bag-of-visual words and spatial extensions for land-use classification’. Proc. ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst., San Jose, CA, USA, 2010, pp. 270–279.
-
-
6)
-
13. Descampe, A., De Vleeschouwer, C., Vandergheynst, P.: ‘Scalable feature extraction for coarse-to-fine jpeg 2000 image classification’, IEEE Trans. Image Process., 2011, 20, (9), pp. 2636–2649.
-
-
7)
-
10. Cheng, G., Zhou, P., Han, J., et al: ‘Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images’, IET Comput. Vis., 2015, 9, (5), pp. 639–647.
-
-
8)
-
7. Cheng, G., Han, J., Guo, L., et al: ‘Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (8), pp. 4238–4249.
-
-
9)
-
1. Gómez-Chova, L., Tuia, D., Moser, G., et al: ‘Multimodal classification of remote sensing images: a review and future directions’, Proc. IEEE, 2015, 103, (9), pp. 1560–1584.
-
-
10)
-
14. JPEG 2000 image coding system: Core coding system, ITU-T Recommendation T.800, Aug. 2002.
-
-
11)
-
15. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. Proc. Int. Conf. Learn. Represent., San Diego, CA, USA, 2015, pp. 1–13.
-
-
12)
-
11. Zou, Q., Ni, L., Zhang, T., et al: ‘Deep learning based feature selection for remote sensing scene classification’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (11), pp. 2321–2325.
-
-
13)
-
16. Szegedy, C., Liu, W., Jia, Y.: ‘Going deeper with convolutions’. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, December 2015, pp. 1–9.
-
-
14)
-
4. Gamba, P.: ‘Human settlements: a global challenge for EO data processing and interpretation’, Proc. IEEE, 2013, 101, (3), pp. 570–581.
-
-
15)
-
2. Cheng, G., Han, J., Lu, X.: ‘Remote sensing image scene classification: benchmark and state of the art’, Proc. IEEE, 2017, 105, (10), pp. 1865–1883.
-
-
16)
-
3. Hu, Q., Wu, W., Xia, T., et al: ‘Exploring the use of google earth imagery and object based methods in land use/cover mapping’, Remote Sens.., 2013, 5, (11), pp. 6026–6042.
-
-
1)

Related content
