Your browser does not support JavaScript!

access icon openaccess High-efficiency scene classification based on deep compressed-domain feature

Remote sensing image (RSI) scene classification has become a more and more fundamental issue in satellite and UAV time-sensitive applications. However, as the volume and velocity of RSIs are undergoing an explosive growth, traditional effective technologies claim a huge amount of computing resources, on a scale that already goes beyond in-orbit processing capacity. Here, we attempt to design a deep feature representation framework based on onboard compressed data to solve the aforementioned problem. Firstly, we extract header and body information in raw JPEG2000 codestream for representing geometrical and geospatial property of RSIs. Moreover, a novel compressed-domain convolutional neural network (CNN) is proposed to obtain high-level representation for effective classification. Extensive experiments demonstrate that, in comparison with the existing relevant state-of-the-art approaches, the proposed method achieves high classification accuracy with faster computation and lower consumption.


    1. 1)
      • 12. Penatti, O.A., Nogueira, K., dos Santos, J.A.: ‘Do deep features generalize from everyday objects to remote sensing and aerial scenes domains?’. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit. Workshops, Boston, MA, USA, 2015, pp. 4451.
    2. 2)
      • 9. Zhang, Y., Zheng, X., Liu, G., et al: ‘Semi-supervised manifold learning based multigraph fusion for highresolution remote sensing image classification’, IEEE Geosci. Remote Sens. Lett., 2014, 11, (2), pp. 464468.
    3. 3)
      • 6. Cheng, G., Han, J., Guo, L., et al: ‘Object detection in remote sensing imagery using a discriminatively trained mixture model’, ISPRS J. Photogramm. Remote Sens., 2013, 85, pp. 3243.
    4. 4)
      • 8. Dai, D., Yang, W.: ‘Satellite image classification via two-layer sparse coding with biased image representation’, IEEE Geosci. Remote Sens. Lett., 2011, 8, (1), pp. 173176.
    5. 5)
      • 5. Yang, Y., Newsam, S.: ‘Bag-of-visual words and spatial extensions for land-use classification’. Proc. ACM SIGSPATIAL Int. Conf. Adv. Geogr. Inf. Syst., San Jose, CA, USA, 2010, pp. 270279.
    6. 6)
      • 13. Descampe, A., De Vleeschouwer, C., Vandergheynst, P.: ‘Scalable feature extraction for coarse-to-fine jpeg 2000 image classification’, IEEE Trans. Image Process., 2011, 20, (9), pp. 26362649.
    7. 7)
      • 10. Cheng, G., Zhou, P., Han, J., et al: ‘Auto-encoder-based shared mid-level visual dictionary learning for scene classification using very high resolution remote sensing images’, IET Comput. Vis., 2015, 9, (5), pp. 639647.
    8. 8)
      • 7. Cheng, G., Han, J., Guo, L., et al: ‘Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (8), pp. 42384249.
    9. 9)
      • 1. Gómez-Chova, L., Tuia, D., Moser, G., et al: ‘Multimodal classification of remote sensing images: a review and future directions’, Proc. IEEE, 2015, 103, (9), pp. 15601584.
    10. 10)
      • 14. JPEG 2000 image coding system: Core coding system, ITU-T Recommendation T.800, Aug. 2002.
    11. 11)
      • 15. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. Proc. Int. Conf. Learn. Represent., San Diego, CA, USA, 2015, pp. 113.
    12. 12)
      • 11. Zou, Q., Ni, L., Zhang, T., et al: ‘Deep learning based feature selection for remote sensing scene classification’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (11), pp. 23212325.
    13. 13)
      • 16. Szegedy, C., Liu, W., Jia, Y.: ‘Going deeper with convolutions’. Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, December 2015, pp. 19.
    14. 14)
      • 4. Gamba, P.: ‘Human settlements: a global challenge for EO data processing and interpretation’, Proc. IEEE, 2013, 101, (3), pp. 570581.
    15. 15)
      • 2. Cheng, G., Han, J., Lu, X.: ‘Remote sensing image scene classification: benchmark and state of the art’, Proc. IEEE, 2017, 105, (10), pp. 18651883.
    16. 16)
      • 3. Hu, Q., Wu, W., Xia, T., et al: ‘Exploring the use of google earth imagery and object based methods in land use/cover mapping’, Remote Sens.., 2013, 5, (11), pp. 60266042.

Related content

This is a required field
Please enter a valid email address