access icon openaccess Synthesis of uniformly excited sparse rectangular planar array for sidelobe suppression using multi-objective optimisation algorithm

Here, the multi-objective optimisation algorithm speed-constrained multi-objective particle swarm optimisation is applied to the synthesis of uniformly excited sparse-rectangular planar array with low sidelobe level. Numerical simulations have been conducted to test the performance of multi-objective optimisation algorithm when used in this synthesis problem, and resulting radiation patterns are compared with those from other existing synthesis algorithms in literatures. Comparative results illustrate that the proposed algorithm has obtained the lowest maximum sidelobe level (MSLL) in φ = 0 plane (φ is the elevation angle) of radiation pattern combined with the lowest maximum MSLL in φ = π/2 plane. In addition, convergence performance of the multi-objective optimisation algorithm when used in this synthesis problem has also been investigated here.

Inspec keywords: particle swarm optimisation; linear antenna arrays; optimisation; Pareto optimisation; planar antenna arrays; antenna arrays; antenna radiation patterns

Other keywords: lowest maximum sidelobe level; synthesis problem; speed-constrained multiobjective particle swarm optimisation; multiobjective optimisation algorithm; sparse-rectangular planar array; existing synthesis algorithms; uniformly excited sparse rectangular planar array

Subjects: Antenna arrays; Optimisation techniques; Optimisation techniques

References

    1. 1)
      • 2. Razavi, A., Forooraghi, K.: ‘Thinned arrays using pattern search algorithms’, Prog. Electromagn. Res.., 2008, 78, pp. 6171.
    2. 2)
      • 3. Yang, K., Zhao, Z., Liu, Y.: ‘Synthesis of sparse planar arrays with matrix pencil method’. 2011 Int. Conf. on Computational Problem-Solving (ICCP), Chengdu, China, October 2011, pp. 8285.
    3. 3)
      • 1. Kumar, B.P., Branner, G.R.: ‘Generalized analytical algorithm for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry’, IEEE Trans. Antennas Propag., 2005, 53, (2), pp. 621634.
    4. 4)
      • 6. Chen, K.S., Yun, X.H., He, Z.S., et al: ‘Synthesis of sparse planar array using modified real genetic algorithm’, IEEE Trans. Antennas Propag., 2007, 55, (4), pp. 10671073.
    5. 5)
      • 8. Papadopoulos, K.A., Papagianni, C.A., Gkonis, P.K., et al: ‘Particle swarm optimization of antenna arrays with efficiency constraints’, Prog. Electromagn. Res. M., 2011, 17, pp. 237251.
    6. 6)
      • 5. Liu, H., Zhao, H., Li, W., et al: ‘Synthesis of sparse planar arrays using matrix mapping and differential evolution’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, (99), pp. 19051908.
    7. 7)
      • 7. Nebro, A.J., Durillo, J.J., García-Nieto, J., et al: ‘SMPSO: a new PSO-based metaheuristic for multi-objective optimization’. Proc. IEEE Symp. Comput. Intell. MCDM, Nashville, TN, USA, March 2009, pp. 6673.
    8. 8)
      • 4. Zhang, C.Y., Fu, X.J., Leo, L., et al: ‘Synthesis of broadside linear aperiodic arrays with sidelobe suppression and null steering using whale optimization algorithm’, IEEE Antennas Wirel. Propag. Lett., 2018, 17, (2), pp. 347350.
    9. 9)
      • 9. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multi-objective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0263
Loading

Related content

content/journals/10.1049/joe.2019.0263
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading