Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Silicon-based on-chip four-channel phased-array radar transmitter with ferroelectric thin film at 100 GHz

A silicon-based phased-array transmitter working at 100 GHz is proposed in this study. Planar array ferroelectric film phase shifters (FPSs) are realised with patch antennas, DC bias lines, microstrip lines and power dividers on a monolithic silicon substrate. The system enables full process compatibility and avoids loss caused by multichip interconnection. The isolation layer uses benzocyclobutene polymer film with low permittivity and low loss tangent, providing large thickness physical isolation. The FPS has a compact length of 0.45 mm, and simulation results show that its phase shift degree at 100 GHz is 125.7° with 3.95 dB insertion loss and 11.4 dB reflection loss. The patch antenna shows that the maximum simulated radiation gain of the single antenna is 4 dBi and the four-element antenna array is 9.7 dBi at 100 GHz. The beam can be steered to ±10°. The proposed system lays an important foundation for the realisation of silicon-based system-on-chip radar RF front-end system.

References

    1. 1)
      • 9. Chen, Z, Hong, W, Chen, J X, et al: ‘Low-phase noise oscillator utilising high-Q active resonator based on substrate integrated waveguide technique’, IET Microw. Antenna Propag., 2013, 8, (3), pp. 137144.
    2. 2)
      • 3. Erker, E G, Nagra, A S, Liu, Y, et al: ‘Monolithic Ka-band phase shifter using voltage tunable BaSrTiO/sub 3/ parallel plate capacitors’, IEEE Microw. Guided Wave Lett., 2002, 10, (1), pp. 1012.
    3. 3)
      • 1. Tessmann, A, Kudszus, S, Feltgen, T, et al: ‘Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications’, IEEE Trans. Microwave Theory Tech., 2002, 50, (12), pp. 29953001.
    4. 4)
      • 7. Zhu, L, Melde, K L.: ‘On-wafer measurement of microstrip-based circuits with a broadband vialess transition’, IEEE Trans. Adv. Packag., 2006, 29, (3), pp. 654659.
    5. 5)
      • 2. Chang, K W, Wang, H, Shreve, G, et al: ‘Forward-looking automotive radar using a W-band single-chip transceiver’, IEEE Trans. Microwave Theory Tech., 1995, 43, (7), pp. 16591668.
    6. 6)
      • 8. Liu, J, Chen, S, Ning, X, et al: ‘Characterization of the field-dependent permittivity of Ba0.5Sr0.5TiO3 thin films up to 110 GHz’, IEICE Electron. Express, 2016, 13, (19).
    7. 7)
      • 5. Wee, F H, Malek, F.: ‘Barium strontium titanate (BST) array antenna covered with dielectric resonator superstrates for high gain and high directive antenna’. Int. Symp. Antennas Propagation and EM Theory, 2010, pp. 112115.
    8. 8)
      • 6. Gibari, M E, Hadjloum, M, Li, H.: ‘Conductor-backed coplanar waveguide to microstrip transition on BCB polymer thin film with bandwidth over 60 GHz’. Int. Conf. on Microwave and Photonics, 2016.
    9. 9)
      • 4. Suherman, P M, Jackson, T J, Tse, Y Y, et al: ‘Microwave properties of Ba0.5Sr0.5TiO3 thin film coplanar phase shifters’, J. Appl. Phys., 2006, 99, (10), p. 1323.
    10. 10)
      • 10. Kanaujia, B K, Vishvakarma, B R.: ‘Analysis of Gunn integrated annular ring microstrip antenna’, IEEE Trans. Antenna Propag., 2004, 52, (1), pp. 8897.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0239
Loading

Related content

content/journals/10.1049/joe.2019.0239
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address