access icon openaccess Multi-layer broadband asymmetric transmission of linearly polarised in active metasurface

Although many different kinds of polarisers have been extensively studied in the last 20 years, most previous designs were passive and single-functional designs. In this study, a kind of a new active polarisation converter is designed. The active polarisation converter is comprised of periodically arranged circular ring embedded with PIN diodes. Four different results of polarisation transformation and reflection can be presented by controlling the bias voltage of the PIN diodes. The full-wave simulation results show that the proposed metasurface can rigorously satisfy the asymmetric transmission and can achieve cross-polarisation conversion with high efficiencies for linearly polarised waves. In addition, there is another particularly obvious advantage of the proposed structure is its broad operation bandwidth in microwave band, the bandwidth of the polariser reaches 70%, more than 90% cross-polarisation conversion efficiency is observed from 6.5 to 13.5 GHz.

Inspec keywords: p-i-n diodes; microwave metamaterials; electromagnetic wave polarisation; electromagnetic wave transmission

Other keywords: active polarisation converter; linear polarisation; periodically arranged circular ring; PIN diodes; reflection; polarisation transformation; active metasurface; single-functional designs; polariser; microwave band; cross-polarisation conversion efficiency; full-wave simulation; frequency 6.5 GHz to 13.5 GHz; multilayer broadband asymmetric transmission; bias voltage; linearly polarised waves

Subjects: Junction and barrier diodes; Electromagnetic waves: theory; Metamaterials and structures (microwave)

References

    1. 1)
      • 10. Jia, Y., Liu, Y., Zhang, W., et al: ‘Ultra-wideband and high-efficiency polarization rotator based on metasurface’, Appl. Phys. Lett., 2016, 109, (5), p. 051901.
    2. 2)
      • 5. Mutlu, M., Ozbay, E.: ‘A transparent 90 degrees polarization rotator by combining chirality and electromagnetic wave tunneling’, Appl. Phys. Lett., 2012, 100, p. 051909.
    3. 3)
      • 9. Gao, X., Han, X., Cao, W.P., et al: ‘Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface’, IEEE Trans. Antennas Propag., 2015, 63, (8), pp. 35223530.
    4. 4)
      • 12. Chen, H., Ma, H., Wang, J., et al: ‘Ultra-wideband transparent 90° polarization conversion metasurfaces’, Appl. Phys. A, 2016, 122, p. 463.
    5. 5)
      • 11. Li, Y., Zhang, J., Qu, S., et al: ‘Ultra-broadband linearly polarisation manipulation metamaterial’, Electron. Lett., 2014, 50, (23), pp. 16581660.
    6. 6)
      • 14. Euler, M., Fusco, R.C.V., Dickie, R.: ‘325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor’, IEEE Trans. Antennas Propag., 2010, 58, (7), pp. 24572459.
    7. 7)
      • 16. Li, W., Xia, S., He, B., et al: ‘A reconfigurable polarization converter using active metasurface and its application in horn antenna’, IEEE Trans. Antennas Propag., 2016, 64, (12), pp. 52815290.
    8. 8)
      • 20. Xu, H.X., Tang, S., Wang, G.M., et al: ‘Multifunctional microstrip array combining a linear polarizer and focusing metasurface’, IEEE Trans. Antennas Propag., 2016, 64, (8), pp. 36763682.
    9. 9)
      • 1. Lub, J., van de Witte, P., Doornkamp, C., et al: ‘Stable photopatterned cholesteric layers made by photoisomerization and subsequent photopolymerization for use as color filters in liquid-crystal displays’, Adv. Mater., 2003, 15, (17), pp. 14201425.
    10. 10)
      • 4. Meissner, T., Wentz, F.J.: ‘Polarization rotation and the third Stokes parameter: the effects of spacecraft attitude and Faraday rotation’, IEEE Trans. Geosci. Remote Sens., 2006, 44, (3), pp. 506515.
    11. 11)
      • 2. Yao, B., Lei, M., Ren, L., et al: ‘Polarization multiplexed write-once–read-many optical data storage in bacteriorhodopsin films’, Opt. Lett., 2005, 30, (22), pp. 30603062.
    12. 12)
      • 3. White, A.G., James, D.F.V., Munro, W.J., et al: ‘Exploring Hilbert space: accurate characterization of quantum information’, Phys. Rev. A, 2001, 65, (1), p. 012301.
    13. 13)
      • 21. Chen, M.L.N., Jiang, L.J., Sha, W.E.I., et al: ‘Polarization control by using anisotropic 3-D chiral structures’, IEEE Trans. Antennas Propag., 2016, 64, (11), pp. 46874694.
    14. 14)
      • 6. Xu, J., Li, T., Lu, F.F., et al: ‘Manipulating optical polarization by stereo plasmonic structure’, Opt. Express, 2011, 19, pp. 748756.
    15. 15)
      • 19. Dou, T., Wei, L., Ran, X., et al: ‘Broadband asymmetric transmission of linearly polarised wave based on bilayered chiral metamaterial’, IET Microw. Antennas Propag., 2016, 11, (2), pp. 171176.
    16. 16)
      • 13. Baena, J.D., Glybovski, S.B., Risco, J.P.D., et al: ‘Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces’, IEEE Trans. Antennas Propag., 2017, 65, (8), pp. 41244133.
    17. 17)
      • 8. Zhang, L., Zhou, P., Lu, H., et al: ‘Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 11571160.
    18. 18)
      • 7. Hao, J., Yuan, Y., Ran, L., et al: ‘Manipulating electromagnetic wave polarizations by anisotropic metamaterials’, Phys. Rev. Lett., 2007, 99, (6), p. 063908.
    19. 19)
      • 15. Joyal, M.A., Laurin, J.J.: ‘Analysis and design of thin circular polarizers based on meander lines’, IEEE Trans. Antennas Propag., 2012, 60, (6), pp. 30073011.
    20. 20)
      • 17. Wei, Z., Cao, Y., Fan, Y., et al: ‘Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators’, Appl. Phys. Lett., 2011, 99, (22), p. 221907.
    21. 21)
      • 18. Yan, S., Vandenbosch, G.A.E.: ‘Compact circular polarizer based on chiral twisted double split-ring resonator’, Appl. Phys. Lett., 2013, 102, (10), p. 103503.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0224
Loading

Related content

content/journals/10.1049/joe.2019.0224
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading