Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Multi-objective optimisation of hydroelectric PMSG considering water-level variation

The variable hydrological conditions that are found in run-of-the river projects require operations over a wide range of water-level variations. This article develops a novel optimisation strategy for permanent magnet synchronous generator (PMSG) used in hydroelectric plant. The basis of this strategy is a simplified subdomain (SD) analytical model of the surface-mounted PM generator combined with an improved genetic algorithm, which searches the optimal generator parameters that maximise the operating efficiency of generators at different water-level conditions and minimise the material cost. The electromagnetic performances of the optimised generator are investigated and compared with conventional optimal design. It is found that the proposed method allows the emergence of higher performances in variable hydrological conditions.

References

    1. 1)
      • 14. Akiror, J.C., Pillay, P., Merkhouf, A.: ‘Effect of saturation on rotational flux distribution in hydro generators’, IEEE Trans. Energ. Conv., 2016, 31, (4), pp. 16571664.
    2. 2)
      • 18. Zhu, Z.Q., Howe, D., Chan, C.C.: ‘Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines’, IEEE Trans. Magn., 2002, 38, (1), pp. 229238.
    3. 3)
      • 11. Goryca, Z., Różowicz, S., Dąbała, K., et al: ‘Design and tests of generators for micro hydro plants’. Intl Symp. Electrical Machines (SME), Naleczow, Poland, June 2017.
    4. 4)
      • 20. Gao, J., Dai, L., Zhang, W.: ‘Improved genetic optimization algorithm with subdomain model for multi-objective optimal design of SPMSM’, CES Trans. Electr. Mach. Syst., 2018, 2, (1), pp. 160165.
    5. 5)
      • 13. Irasari, P., Kasim, M., Hikmawan, M., et al: ‘Optimization of modular stator construction to improve permanent magnet generator characteristics for very low head hydro power application’. Intl Conf. Sustainable Energy Engineering and Application (ICSEEA), Jakarta, Indonesia, October 2017, pp. 156163.
    6. 6)
      • 5. Kalla, U.K., Singh, B., Sreenivasa Murthy, S.: ‘Modified electronic load controller for constant frequency operation with voltage regulation of small hydro-driven single-phase SEIG’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 27892800.
    7. 7)
      • 16. Borkowski, D.: ‘Small hydropower plant as a supplier for the primary energy consumer’. 16th Intl. Scientific Conf. Electric Power Engineering (EPE), May 2015.
    8. 8)
      • 4. Tischer, C.B., Tibola, J.R., Scherer, L.G., et al: ‘Proportional-resonant control applied on voltage regulation of standalone SEIG for micro-hydro power generation’, IET Renew. Power Gener., 2017, 11, (5), pp. 593602.
    9. 9)
      • 6. Scherer, L.G., Tambara, R.V., de Camargo, R.F.: ‘Voltage and frequency regulation of standalone self-excited induction generator for micro-hydro power generation using discrete-time adaptive control’, IET Renew. Power Gener., 2016, 10, (4), pp. 531540.
    10. 10)
      • 10. Kurihara1, K., Kubota, T., Saito, K., et al: ‘High-efficiency interior permanent-magnet synchronous generators with minimal voltage regulation for nano and pico hydro generation’. 15th Intl Conf. Electrical Machines and Systems (ICEMS), Sapporo, Japan, October 2012.
    11. 11)
      • 12. Garcia, F.J., Uemori, M.K.I., Echeverria, J.J.R., et al: ‘Design requirements of generators applied to low-head hydro power plants’, IEEE Trans. Energ. Conv., 2015, 30, (4), pp. 16301638.
    12. 12)
      • 1. Boldea, I.: ‘Electric generators and motors: an overview’, IEEE CES Trans. Electr. Mach. Syst., 2017, 1, (1), pp. 314.
    13. 13)
      • 3. Chilipi, R.S.R., Singh, B., Murthy, S.S., et al: ‘Design and implementation of dynamic electronic load controller for three-phase self-excited induction generator in remote small-hydro power generation’, IET Renew. Power Gener., 2013, 8, (3), pp. 269280.
    14. 14)
      • 17. Sobczyk, T.J., Mazgaj, W., Szular, Z., et al: ‘Energy conversion in small water plants with variable speed PM generator’, Archieves Electr. Eng., 2011, 60, (2), pp. 159168.
    15. 15)
      • 7. Violante, D., Farner, L., Münch, C., et al: ‘Design of a PM-generator for a straight flow counter-rotating MicroHydro turbine’. IEEE Power Electronics and Applications (ECCE Europe), 19th European Conf., Warsaw, Poland, September 2017, pp. 110.
    16. 16)
      • 2. Cui, X., Binder, A., Schlemmer, E.: ‘Straight-flow permanent magnet synchronous generator design for small hydro power plants’. IEEE Clean Electrical Power, Intl Conf., Capri, Italy, May 2007, pp. 323328.
    17. 17)
      • 19. Bertotti, G.: ‘General properties of power losses in soft ferromagnetic materials’, IEEE Trans. Magn., 1988, 24, (1), pp. 621630.
    18. 18)
      • 8. Melly, D., Horta, R., Münch, C., et al: ‘Development of a PM-generator for a counter-rotating micro-hydro turbine’. IEEE Electrical Machines (ICEM), Intl Conf., Berlin, Germany, September 2014, pp. 124129.
    19. 19)
      • 15. Borkowski, D., Wegiel, T.: ‘Small hydro-power plant with integrated turbine-generators working at variable speed’, IEEE Trans. Energ. Conv., 2013, 28, (2), pp. 452459.
    20. 20)
      • 9. Wirtayasa, K., Irasari, P., Kasim, M., et al: ‘Design of an axial–flux permanent-magnet generator (AFPMG) 1 kW, 220 volt, 300 rpm, 1 phase for pico hydro power plants’. Intl Conf. Sustainable Energy Engineering and Application (ICSEEA), Jakarta, Indonesia, October 2017, pp. 172179.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0100
Loading

Related content

content/journals/10.1049/joe.2019.0100
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address