Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Virtual prototype and GaN HEMT based high frequency LLC converter design

Gallium nitride (GaN) high-electron-mobility transistor (HEMT) with the merits of the fast switch speed, low on resistance and low switch loss is applicable to high-frequency LLC converters. However, voltage stress and ringing problems during the fast switching transient have retarded the promotion of switch speed and prolonged the design cycles. This study proposed an economic and time-saving virtual prototype based LLC converter design method, based on which the voltage stress and ringing problem can be analysed and suppressed by iteration design. The virtual prototype comprises of compact GaN HEMT device model and accurate circuit model. The correctness and effectiveness of the virtual-prototype-based design method is verified with well matching simulation and experiment waveforms.

References

    1. 1)
      • 4. Hayashi, Y., Toyoda, H., Ise, T., et al: ‘Contactless DC connector based on GaN LLC converter for next-generation data centers’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 32443253, doi: 10.1109/TIA.2014.2387481.
    2. 2)
      • 6. Long, X., Liang, W., Jun, Z., et al: ‘A normalized quantitative method for GaN HEMT turn-ON overvoltage modeling and suppressing’, IEEE Trans. Ind. Electron., 2019, 66, (4), pp. 27662775, doi: 10.1109/TIE.2018.2842768.
    3. 3)
      • 5. Reusch, D., Strydom, J.: ‘Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20082015, doi: 10.1109/TPEL.2013.2266103.
    4. 4)
      • 4. Hayashi, Y., Toyoda, H., Ise, T., et al: ‘Contactless DC connector based on GaN LLC converter for next-generation data centers’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 32443253, doi: 10.1109/TIA.2014.2387481.
    5. 5)
      • 5. Reusch, D., Strydom, J.: ‘Understanding the effect of PCB layout on circuit performance in a high-frequency gallium-nitride-based point of load converter’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 20082015, doi: 10.1109/TPEL.2013.2266103.
    6. 6)
      • 1. Bo, Y., Lee, F.C., Zhang, A.J., et al: ‘LLC resonant converter for front end DC/DC conversion’. APEC. Seventeenth Annual IEEE Applied Power Electronics Conf. and Exposition, Dallas, TX, USA, 2002, vol. 2, pp. 11081112, doi: 10.1109/APEC.2002.989382.
    7. 7)
      • 2. De Simone, S., Adragna, C., Spini, C., et al: ‘Design-oriented steady-state analysis of LLC resonant converters based on FHA’. Int. Symp. on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006., Taormina, 2006, pp. 200207, doi: 10.1109/SPEEDAM.2006.1649771.
    8. 8)
      • 6. Long, X., Liang, W., Jun, Z., et al: ‘A normalized quantitative method for GaN HEMT turn-ON overvoltage modeling and suppressing’, IEEE Trans. Ind. Electron., 2019, 66, (4), pp. 27662775, doi: 10.1109/TIE.2018.2842768.
    9. 9)
      • 3. Seeman, M.D.: ‘Gan devices in resonant LLC converters: system-level considerations’, IEEE Power Electron. Mag., 2015, 2, (1), pp. 3641, doi: 10.1109/MPEL.2014.2381456.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0081
Loading

Related content

content/journals/10.1049/joe.2019.0081
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address