Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Theorems of compensation and Tellegen in non-sinusoidal circuits via geometric algebra

Presently, it is not possible to corroborate Tellegen's theorem or to articulate the compensation theorem in the frequency domain when considering all the harmonics simultaneously. The circuit analysis approach based on geometric algebra is used here to solve these two challenges. We show here the significance of representing harmonics by k -vectors and how k -vectors process the magnitude, the phase and the frequency of a sine wave. We take a tutorial approach and provide examples to demonstrate both, the simplicity of this approach and how a distinct representation of time-domain signals of different frequencies facilitates both, energy analysis and confirming the principle of superposition and Kirchhoff's circuits’ laws in non-sinusoidal conditions when considering all the harmonics simultaneously.

References

    1. 1)
      • 22. Castilla, M., Bravo, J.C., Ordóñez, M.: ‘Geometric algebra: a multivectorial proof of Tellegen's theorem in multiterminal networks’, IET Circuits Devices Syst.., 2008, 2, (4), pp. 383390.
    2. 2)
      • 36. Czarnecki, L.: ‘Why the power theory has a limited contribution to studies on the supply and loading quality?’. Int. Conf. on Harmonics & Quality of Power, Ljubljana, Slovenia, May 2018, pp. 15.
    3. 3)
      • 18. Bay, S.J.: ‘Fundamentals of linear state space systems’ (McGraw Hill Intl. Ed., Singapore, 1999).
    4. 4)
      • 14. Baggini, A.: ‘Handbook of power quality’ (John Wiley & Sons, Inc., Chichester, 2008).
    5. 5)
      • 4. Chappell, J.M., Drake, S.P., Abbott, D., et al: ‘Geometric algebra for electrical and electronic engineers’, Proc. IEEE, 2014, 102, (9), pp. 13401363.
    6. 6)
      • 33. Budeanu, C.I.: ‘Puissances réctives et fictives’ (Institut National Roumain, Bucharest, 1927).
    7. 7)
      • 37. Castilla, M.V., Bravo, J.C., Martin, F.: ‘Multivectorial strategy to interpret a resistive behaviour of loads in smart buildings’. Int. Conf. on Compatibility, Power Electronics & Power Engineering, Doha, Qatar, April 2018, pp. 15.
    8. 8)
      • 5. Chappell, J.M., Iqbal, A., Abbott, D., et al: ‘The vector algebra war: a historical perspective’, Proc. IEEE, 2016, 4, (99), pp. 19972004.
    9. 9)
      • 10. Castro-Núñez, M., Londoño-Monsalve, D., Castro-Puche, R.: ‘M, the conservative power quantity based on the flow of energy’, J. Eng., 2016, 2016, (7), pp. 269276, doi: 10.1049/joe.2016.0157.
    10. 10)
      • 13. Penfield, P., Spence, R., Duinker, S.: ‘A generalized form of Tellegen's theorem’, IEEE Trans. Circuits Syst., 1970, 17, (3), pp. 302305.
    11. 11)
      • 16. Frank, E.: ‘Electrical measurement analysis’ (McGraw Hill, New York, 1959).
    12. 12)
      • 6. Castro-Núñez, M., Castro-Puche, R., Nowicki, E.: ‘The use of geometric algebra in circuit analysis and its impact on the definition of power’. Nonsinusoidal Currents Compensation, Łagów, Poland, June 2010, pp. 8995.
    13. 13)
      • 23. Bravo, J.C., Castilla, M.V.: ‘Energy conservation law in industrial architecture: an approach through geometric algebra’, Symmetry, 2016, 8, (92), pp. 113, doi: 10.3390/sym809092.
    14. 14)
      • 20. Menti, A., Zacharias, T., Milias-Argitis, J.: ‘Geometric algebra: a powerful tool for representing power under nonsinusoidal conditions’, IEEE Trans. Circuits Syst. I., 2007, 54, (3), pp. 601609.
    15. 15)
      • 11. Shenkman, A.: ‘Circuit analysis for power engineering handbook’ (Springer, New Delhi, 2008).
    16. 16)
      • 27. Castro-Puche, R.: ‘Álgebra moderna e introducción al álgebra geométrica’ (Editorial Ecoe, Bogota, 2013).
    17. 17)
      • 8. Castro-Núñez, M., Castro-Puche, R.: ‘The IEEE standard 1459, the CPC power theory, and geometric algebra in circuits with nonsinusoidal sources and linear loads’, IEEE Trans. Circuits Syst., 2012, 59, (12), pp. 29802990.
    18. 18)
      • 28. Jancewicz, B.: ‘Multivectors and Clifford algebra in electrodynamics’ (World Science, Singapore, 1988).
    19. 19)
      • 17. Oppenheim, A.V., Willsky, A.S., Young, I.T.: ‘Signals and systems’ (Prentice-Hall, Upper Saddle River, 1983).
    20. 20)
      • 12. Tellegen, B.D.H.: ‘A general network theorem with applications’, Philips Res. Rept., 1952, 7, pp. 259269.
    21. 21)
      • 15. Beck, Y., Calamaro, N., Shmilovitz, : ‘A review study of instantaneous electric transport theories and their novel implementations’, Renew. Sustain. Energy Rev., 2016, 57, (4), pp. 14281439.
    22. 22)
      • 34. Marcelo, B., Santos, R., Tirolli, M.: ‘Currents’ physical components (CPC): case studies in single phase systems’. Simposio Brasileiro de Sistemas Eletricos, Rio de Janeiro, Brazil, May 2018, pp. 16.
    23. 23)
      • 9. Castro-Núñez, M.: ‘The use of geometric algebra in the analysis of non-sinusoidal networks and the construction of a unified power theory for single phase systems – a paradigm shift’. PhD thesis, University of Calgary, 2013.
    24. 24)
      • 32. Dorst, L., Fontijne, D., Mann, S.: ‘Geometric algebras for computer science: an object oriented approach to geometry’ (Morgan Kaufman, Burlington, 2007).
    25. 25)
      • 3. Buchanan, M.: ‘Geometric intuition’, Nature Phys., 2011, 7, (6), p. 442, doi: 10.1038/nphys2011.
    26. 26)
      • 1. Steinmetz, C.P.: ‘Complex quantities and their use in electrical engineering’. Proc. Int. Electrical Congress, Chicago, IL, 1893, pp. 3374.
    27. 27)
      • 35. Grasso, F., Luchetta, A., Manetti, S., et al: ‘Improvement of power flow analysis based on currents’ physical component (CPC) theory’. Int. Symp. on Circuits & Systems, Florence, Italy, May 2018, pp. 15.
    28. 28)
      • 31. Doran, C., Lasenby, A.: ‘Geometric algebra for physicists’ (Cambridge University Press, Cambridge, 2005).
    29. 29)
      • 30. de Sabbata, V., Kumar Datta, B.: ‘Geometric algebra and applications to physics’ (Taylor-Francis, New York, 2006).
    30. 30)
      • 26. Jin, G., Lop, A., Xial, H.: ‘Expansion of the Ohm's Law in nonsinusoidal AC circuit’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 13631371.
    31. 31)
      • 2. Kennelly, A.E.: ‘Impedance’, Trans. AIEE, 1893, 10, (4), p. 175.
    32. 32)
      • 38. Coelho, R., Lima, E., Junqueria, C., et al: ‘Comparative analysis of power definitions in nonsinusoidal conditions – A case study’. Simposio Brasileiro de Sistemas Eletricos, Rio de Janeiro, Brazil, May 2018, pp. 15.
    33. 33)
      • 19. Scott, D.E.: ‘An introduction to circuit analysis (a systems approach)’ (McGraw Hill Intl. Ed., Singapore, 1987).
    34. 34)
      • 7. Castro-Núñez, M., Castro-Puche, R.: ‘Advantages of geometric algebra over complex numbers in the analysis of networks with nonsinusoidal sources and linear loads’, IEEE Trans. Circuits Syst., 2012, 59, (9), pp. 20562064.
    35. 35)
      • 25. Petroianu, A.I.: ‘A geometric algebra reformulation and interpretation of Steinmetz's symbolic method and his power expression in alternating current electrical circuits’, Electr. Eng., 2015, 97, (3), pp. 175180.
    36. 36)
      • 24. Petroianu, A.I.: ‘Mathematical representations of electrical power: vector or complex number? Neither!’. Electrical Power and Energy Conf., Calgary, AB, November 2014, pp. 170177.
    37. 37)
      • 39. Berrisford, A.J.: ‘The harmonic impact project – IEEE-1459 power definitions trialed in revenue meters’. Intl. Instrumentation and Measurement Technology Conf., Houston, USA, 2018, pp. 15.
    38. 38)
      • 29. Hestenes, D., Sobczyk, G.: ‘Clifford algebra to geometric calculus: a unified language for mathematics and physics’ (Kluwer Academic, Dordrecht, 1987).
    39. 39)
      • 21. Menti, A., Zacharias, T., Milias-Argitis, J.: ‘Power components under nonsinusoidal conditions using a power multivector’. IEEE X Conf.-Seminar on Nonsinusoidal Currents and Compensation, Łagów, Poland, 15–18 June 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2019.0048
Loading

Related content

content/journals/10.1049/joe.2019.0048
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address