access icon openaccess Implicit common-mode resonance by parasitic capacitances in LC oscillators for Ka-band satellite receiver

Parasitic capacitances in high frequency have a significant role in examining the inductor-capacitor tank oscillators (LC oscillators) output signal quality. Here, the authors proposed a new idea for Ka-band satellite receiver oscillator, which considers these parasitic elements, in order to maintain a specific precise frequency where there is no need for a broadband frequency range. By using tuned parasitic elements in differential LC oscillator to resonate the circuit's common mode at twice the oscillation frequency, a better phase noise performance and higher oscillator FOM can be achieved. The developed methodology is employed to design and fabricate an oscillator in 0.25µm AlGaAs/InGaAs pseudomorphic high-electron-mobility transistors process for 19.25GHz oscillations.

Inspec keywords: satellite communication; gallium arsenide; indium compounds; LC circuits; microwave oscillators; microwave field effect transistors; III-V semiconductors; aluminium compounds; phase noise; radio receivers

Other keywords: implicit common-mode resonance; parasitic capacitances; higher oscillator FOM; differential LC oscillator; size 0.25 mum; AlGaAs-InGaAs; Ka-band satellite receiver; frequency 19.25 GHz; phase noise performance; tuned parasitic elements; pseudomorphic high-electron-mobility transistors process; Ka-band satellite receiver oscillator; LC oscillator output signal quality; twice the oscillation frequency; circuit common mode resonator; broadband frequency range; specific precise frequency

Subjects: Radio links and equipment; Other field effect devices; Oscillators; Solid-state microwave circuits and devices

References

    1. 1)
      • 6. Murphy, D., Darabi, H., Wu, H.: ‘Implicit common-mode resonance in LC oscillators’, IEEE J. Solid-State Circuits, 2017, 52, (3), pp. 812821.
    2. 2)
      • 9. Murphy, D., Darabi, H., Wu, H.: ‘A VCO with implicit common-mode resonance’. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, USA, February 2015.
    3. 3)
      • 2. Rael, J., Abidi, A.: ‘Physical processes of phase noise in differential LC oscillators’. Proc. IEEE Custom Integrated Circuits Conf., Orlando, FL, USA, September 2000, pp. 569572.
    4. 4)
      • 5. Hegazi, E., Sjoland, H., Abidi, A.A.: ‘A filtering technique to lower LC oscillator phase noise’, IEEE J. Solid-State Circuits, 2001, 36, (12), pp. 19211930.
    5. 5)
      • 1. Andreani, P., Wang, X., Vandi, L., et al: ‘A study of phase noise in Colpitts and LC-tank CM ososcillators’, IEEE J. Solid-State Circuits, 2005, 40, (5), pp. 11071118.
    6. 6)
      • 7. Hajimiri, A., Lee, T.H.: ‘A general theory of phase noise in electrical oscillators’, IEEE J. Solid-State Circuits, 1998, 33, (2), pp. 179194.
    7. 7)
      • 3. Mazzanti, A., Andreani, P.: ‘Class-charmonic CMOS VCOs, with a general result on phase noise’, IEEE J. Solid-State Circuits, 2008, 43, (12), pp. 27162729.
    8. 8)
      • 11. Nikpaik, A., Nabavi, A., Shirazi, A.H.M., et al: ‘A dual-tank LC VCO topology approaching towards the maximum thermodynamically-achievable oscillator FoM’. 2015 IEEE Custom Integrated Circuits Conf. (CICC), San Jose, CA, USA, September 2015, vol. 1, no. 4, pp. 2830.
    9. 9)
      • 8. Ross, R.L.S., Svensson, S.P., Lugli, P.: ‘Pseudomorphic HEMT technology and applications’ (Springer-Verlag, New York, NY, USA, 1996).
    10. 10)
      • 10. Babaie, M., Staszewski, R.B.: ‘An ultra-low phase noise class-F2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability’, IEEE J. Solid-State Circuits, 2015, 50, (3), pp. 679692.
    11. 11)
      • 14. Steinkamp, J., Henkel, F., Waldow, P., et al: ‘A Colpitts oscillator design for a GSM base station synthesizer’. IEEE Radio Frequency Integrated Circuits Symp., Honolulu, HI, USA, June 2007, pp. 405408.
    12. 12)
      • 4. Fanori, L., Liscidini, A., Andreani, P.: ‘A 6.7-to-9.2 GHz 55 nm CMOS hybrid class-B/class-C cellular TX VCO’. IEEE Int. Solid-State Circuits Conf. (ISSCC) Digest Technical Papers, San Francisco, CA, USA, February 2012, pp. 354355.
    13. 13)
      • 13. Garampazzi, M., Mendes, P.M., Codega, N., et al: ‘Analysis and design of a 195.6 dBc/Hz peak fom P-N class-B oscillator with transformer-based tail filtering’, IEEE J. Solid-State Circuits, 2015, 50, (7), pp. 16571668.
    14. 14)
      • 12. Babaie, M., Staszewski, R.B.: ‘A class-F CMOS oscillator’, IEEE J. Solid-State Circuits, 2013, 48, (12), pp. 31203133.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9428
Loading

Related content

content/journals/10.1049/joe.2018.9428
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading