Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Voltage stability index and APFC for performance improvement of modern power systems with intense renewables

In this study, a newly developed amalgam power flow controller (APFC) is used for better controllability and voltage stability enhancement of modern power system with deep renewable penetration. A new voltage stability index is proposed to determine the potential site of APFC and then Grey Wolf optimisation based on fuzzy logic is adopted to determine the optimal parameter settings of the APFC. A quarter cosine and exponential fuzzy membership function have been used to find out membership value of diverse objectives. The multi-objective problem is formulated considering three different objectives of conflicting nature. The proposed optimisation framework is implemented on an IEEE benchmark system of 30 buses for different cases. The comparison of simulation results reveals the effectiveness of the proposed model.

References

    1. 1)
      • 11. Chen, X.R., Pahalawaththa, N.C., Annakkage, U.D., et al: ‘Controlled series compensation for improving the stability of multi-machine power systems’, IEE Proc., Gener. Transm. Distrib., 1995, 142, (4), pp. 361366.
    2. 2)
      • 4. Ghahremani, E., Kamwa, I.: ‘Optimal placement of multiple-type FACTS devices to maximize power system loadability using a generic graphical user interface’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 764778.
    3. 3)
      • 3. Panda, S., Padhy, N.P.: ‘Optimal location and controller design of STATCOM for power system stability improvement using PSO’, J. Franklin Inst., 2008, 345, (2), pp. 166181.
    4. 4)
      • 2. Tiwari, R., Niazi, K.R., Gupta, V.: ‘Line collapse proximity index for prediction of voltage collapse in power systems’, Int. J. Electr. Power Energy Syst., 2012, 41, (1), pp. 105111.
    5. 5)
      • 15. Jang, J.S., Sun, C.T., Mizutani, E.: ‘Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence’ (Prentice-Hall, New Delhi, India, 1997).
    6. 6)
      • 13. Duan, C., Fang, W., Jiang, L., et al: ‘FACTS devices allocation via sparse optimization’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 13081319.
    7. 7)
      • 8. Kapetanaki, A., Levi, V., Buhari, M., et al: ‘Maximization of wind energy utilization through corrective scheduling and FACTS deployment’, IEEE Trans. Power Syst., 2017, 32, (6), pp. 47644773.
    8. 8)
      • 5. Yorino, N., El-Araby, E.E., Sasaki, H., et al: ‘A new formulation for FACTS allocation for security enhancement against voltage collapse’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 310.
    9. 9)
      • 17. Mirjalili, S., Saremi, S., Mirjalili, S.M., et al: ‘Multi-objective Grey Wolf optimizer: a novel algorithm for multi-criterion optimization’, Expert Syst. Appl., 2016, 47, pp. 106119.
    10. 10)
      • 1. Kessel, P., Glavitsch, H.: ‘Estimating the voltage stability of a power system’, IEEE Trans. Power Deliv., 1986, 1, (3), pp. 346354.
    11. 11)
      • 14. Ranganathan, S., Kalavathi, S.M.: ‘Self-adaptive firefly algorithm based multi-objectives for multi-type FACTS placement’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 25762584.
    12. 12)
      • 7. Varghese, D., Janamala, V.: ‘Optimal location and parameters of GUPFC for transmission loss minimization using PSO algorithm’, 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 2017, pp. 16.
    13. 13)
      • 12. Gerbex, S., Cherkaoui, R., Germond, A.J.: ‘Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms’, IEEE Trans. Power Syst., 2001, 16, (3), pp. 537544.
    14. 14)
      • 10. Mansour, Y., Xu, W., Alvarado, F., et al: ‘SVC placement using critical modes of voltage instability’. IEEE Power Industry Computer Application Conf., Scottsdale, AZ, USA, May 1993, pp. 131137.
    15. 15)
      • 9. Sharma, N.K., Ghosh, A., Varma, R.K.: ‘A novel placement strategy for FACTS controllers’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 982987.
    16. 16)
      • 6. Singh, P., Tiwari, R.: ‘Amalgam power flow controller: a novel flexible, reliable and cost effective solution to control power flow’, IEEE Trans. Power Syst., 2018, 33, (3), pp. 28422853.
    17. 17)
      • 16. Zadeh, L.A.: ‘Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers’ (World Scientific, Singapore, 1996), pp. 394432.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9375
Loading

Related content

content/journals/10.1049/joe.2018.9375
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address