access icon openaccess Solar energy production forecasting through artificial neuronal networks, considering the Föhn, north and south winds in San Juan, Argentina

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/18/JOE.2018.9368.html;jsessionid=4cchfm00hj07n.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.9368&mimeType=html&fmt=ahah

Inspec keywords: statistical analysis; load forecasting; neural nets; learning (artificial intelligence); weather forecasting; wind; photovoltaic power systems; solar power stations; sunlight

Other keywords: forecasting method; south winds; day-ahead solar irradiation curve; raw forecast; environmental variables; Föhn; power production; San Juan; artificial neuronal network; ANN; Argentina; numerical weather prediction methods; mentioned phenomena; solar energy production forecasting; calculated ideal solar irradiation curve; methodology merges statistical learning methods; extreme meteorological phenomena

Subjects: Knowledge engineering techniques; Solar power stations and photovoltaic power systems; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Probability theory, stochastic processes, and statistics; Winds and their effects in the lower atmosphere; Other topics in statistics; Neural computing techniques; Power system planning and layout; Other topics in statistics; Weather analysis and prediction

References

    1. 1)
      • 3. Romero, A.F., Quilumba, F.L., Arcos, H.N.: ‘Short-term active power forecasting of a photovoltaic power plant using an artificial neural network’. International Joint Conference on Neural Networks, Atlanta, GA, USA, 2009, pp. 33353340.
    2. 2)
      • 8. Ji, W., Chee, K.C.: ‘Prediction of hourly solar radiation using a novel hybrid model of {ARMA} and {TDNN}’, Sol. Energy, 2011, 85, (5), pp. 808817.
    3. 3)
      • 5. Alzahrani, A., Shamsi, P., Dagli, C., et al: ‘Solar irradiance forecasting using deep neural networks’, Procedia Comput. Sci., 2017, 114, (1), pp. 989992.
    4. 4)
      • 9. Aires, B.: ‘Sobre El Recurso Solar En La Provincia De San Juan’, inRaichijk, C., Grossi Gallegos, H., Aristegui, R., Righini, R. Grupo de Estudios de la Radiación Solar (GERSolar), Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján (UNLu), Rutas 7 y Avda., 2009.
    5. 5)
      • 1. Tuohy, A., Duffie, J.A., Beckman, W.A., et al: ‘Solar forecasting: methods, challenges, and performance’, IEEE Power Energy Mag., 2013, 13, (6), pp. 5059.
    6. 6)
      • 2. Duffie, J.A., Beckman, W.A., Worek, W.M.: ‘Solar engineering of thermal processes’. IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 2017, pp. 33353340.
    7. 7)
      • 6. Cao, S., Cao, J.: ‘Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis’, Appl. Thermal Eng., 2005, 25, (2–3), pp. 161172.
    8. 8)
      • 10. Norte, F.A.: ‘Características del viento Zonda en la Región de Cuyo’. Tesis Dr., Universidad de Buenos Aires, 1988, p. 245.
    9. 9)
      • 4. Welch, R.L., Ruffing, S.M., Venayagamoorthy, G.K.: ‘Comparison of feedforward and feedback neural network architectures for short term wind speed prediction’. Proc. Int. Jt. Conf. on Neural Networks, San Diego, CA, USA, 2009, pp. 33353340.
    10. 10)
      • 7. Cao, J., Lin, X.: ‘Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique’, Eng. Appl. Artif. Intell., 2008, 21, (8), pp. 12551263.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9368
Loading

Related content

content/journals/10.1049/joe.2018.9368
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading