access icon openaccess Solar energy production forecasting through artificial neuronal networks, considering the Föhn, north and south winds in San Juan, Argentina

This study presents a method to predict a day-ahead solar irradiation curve, under extreme meteorological phenomena (Föhn, north and south winds), existing in the province of San Juan, Argentina. The proposed method is based on an artificial neuronal network (ANN) which is trained with a data set filtered by the environmental variables that characterise the mentioned phenomena. A previously calculated ideal solar irradiation curve is modified from the forecasts generated by the ANN. The proposed methodology merges statistical learning methods and numerical weather prediction (NWP) methods, typically used to improve upon the raw forecast of a NWP model. A reduction of the uncertainty in the power production of photovoltaic plants in San Juan can be achieved with the results of the proposed forecasting method.

Inspec keywords: statistical analysis; load forecasting; neural nets; learning (artificial intelligence); weather forecasting; wind; photovoltaic power systems; solar power stations; sunlight

Other keywords: forecasting method; south winds; day-ahead solar irradiation curve; raw forecast; environmental variables; Föhn; power production; San Juan; artificial neuronal network; ANN; Argentina; numerical weather prediction methods; mentioned phenomena; solar energy production forecasting; calculated ideal solar irradiation curve; methodology merges statistical learning methods; extreme meteorological phenomena

Subjects: Knowledge engineering techniques; Solar power stations and photovoltaic power systems; Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research; Probability theory, stochastic processes, and statistics; Winds and their effects in the lower atmosphere; Other topics in statistics; Neural computing techniques; Power system planning and layout; Other topics in statistics; Weather analysis and prediction

References

    1. 1)
      • 3. Romero, A.F., Quilumba, F.L., Arcos, H.N.: ‘Short-term active power forecasting of a photovoltaic power plant using an artificial neural network’. International Joint Conference on Neural Networks, Atlanta, GA, USA, 2009, pp. 33353340.
    2. 2)
      • 8. Ji, W., Chee, K.C.: ‘Prediction of hourly solar radiation using a novel hybrid model of {ARMA} and {TDNN}’, Sol. Energy, 2011, 85, (5), pp. 808817.
    3. 3)
      • 5. Alzahrani, A., Shamsi, P., Dagli, C., et al: ‘Solar irradiance forecasting using deep neural networks’, Procedia Comput. Sci., 2017, 114, (1), pp. 989992.
    4. 4)
      • 9. Aires, B.: ‘Sobre El Recurso Solar En La Provincia De San Juan’, inRaichijk, C., Grossi Gallegos, H., Aristegui, R., Righini, R. Grupo de Estudios de la Radiación Solar (GERSolar), Instituto de Ecología y Desarrollo Sustentable (INEDES), Universidad Nacional de Luján (UNLu), Rutas 7 y Avda., 2009.
    5. 5)
      • 1. Tuohy, A., Duffie, J.A., Beckman, W.A., et al: ‘Solar forecasting: methods, challenges, and performance’, IEEE Power Energy Mag., 2013, 13, (6), pp. 5059.
    6. 6)
      • 2. Duffie, J.A., Beckman, W.A., Worek, W.M.: ‘Solar engineering of thermal processes’. IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 2017, pp. 33353340.
    7. 7)
      • 6. Cao, S., Cao, J.: ‘Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis’, Appl. Thermal Eng., 2005, 25, (2–3), pp. 161172.
    8. 8)
      • 10. Norte, F.A.: ‘Características del viento Zonda en la Región de Cuyo’. Tesis Dr., Universidad de Buenos Aires, 1988, p. 245.
    9. 9)
      • 4. Welch, R.L., Ruffing, S.M., Venayagamoorthy, G.K.: ‘Comparison of feedforward and feedback neural network architectures for short term wind speed prediction’. Proc. Int. Jt. Conf. on Neural Networks, San Diego, CA, USA, 2009, pp. 33353340.
    10. 10)
      • 7. Cao, J., Lin, X.: ‘Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique’, Eng. Appl. Artif. Intell., 2008, 21, (8), pp. 12551263.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9368
Loading

Related content

content/journals/10.1049/joe.2018.9368
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading