Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Investigation of a decentralised control strategy for grid frequency support from DC microgrids

DC microgrids (DC-MGs) are capable of integrating and coordinating distributed energy resources into power systems, along with providing services to the wider system, e.g. balancing, frequency support, demand response and so on. This study investigates the capability of DC-MGs providing grid frequency support, for the GB enhanced frequency response service. In this study, photovoltaic generation, energy storage, and load form the DC-MGs. The control strategy is a decentralised scheme, based on conventional droop control for active power sharing and grid frequency support. Droop control is also used within the DC-MG for power-sharing amongst generation and load. Scenarios are conducted to evaluate the effectiveness of the control strategy and verified by MATLAB/Simulink simulations.

References

    1. 1)
      • 14. Gururaj, M.V., Padhy, N.P.: ‘A novel decentralized coordinated voltage control scheme for distribution system with DC microgrid’, IEEE Trans. Ind. Inf., 2017, 3203, (c), pp. 11.
    2. 2)
      • 2. Ma, J., Yuan, L., Zhao, Z., et al: ‘Transmission loss optimization-based optimal power flow strategy by hierarchical control for DC microgrids’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 19521963.
    3. 3)
      • 13. Lu, X., Sun, K., Guerrero, J.M., et al: ‘State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications’, IEEE Trans. Ind. Electron., 2013, 61, (6), pp. 28042815.
    4. 4)
      • 7. Chen, D., Xu, Y., Huang, A.Q.: ‘Integration of DC microgrids as virtual synchronous machines into the AC grid’, IEEE Trans. Ind. Electron., 2017, 64, pp. 11.
    5. 5)
      • 18. ‘ERIGrid Education-training Page’. Available at https://erigrid.eu/dissemination/.
    6. 6)
      • 12. Wang, Y., Xu, Y., Tang, Y., et al: ‘Aggregated energy storage for power system frequency control: a finite-time consensus approach’, IEEE Trans. Smart Grid, 2018, 10, (4), pp. 36753686.
    7. 7)
      • 9. National Grid: ‘Enhanced frequency response’, 2016.
    8. 8)
      • 5. Hoke, A., Shirazi, M., Chakraborty, S., et al: ‘Rapid active power control of photovoltaic systems for grid frequency support’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (3), pp. 11.
    9. 9)
      • 1. Kumar, D., Zare, F., Ghosh, A.: ‘DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications and standardizations aspects’, IEEE Access, 2017, 5, pp. 11.
    10. 10)
      • 17. Rodriguez-Diaz, E., Chen, F., Vasquez, J.C., et al: ‘Voltage- level selection of future two-level LVdc distribution grids: a compromise between grid compatibiliy, safety, and efficiency’, IEEE Electrif. Mag., 2016, 4, (2), pp. 2028.
    11. 11)
      • 19. National Grid: ‘Testing guidance for providers of enhanced frequency response balancing service’, 2017.
    12. 12)
      • 11. Yazdanian, M., Mehrizi-Sani, A.: ‘Distributed control techniques in microgrids’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 29012909.
    13. 13)
      • 3. Dragicevic, T., Lu, X., Vasquez, J.C., et al: ‘DC microgrids – part II: a review of power architectures, applications, and standardization issues’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35283549.
    14. 14)
      • 8. Lyu, X., Xu, Z., Zhao, J., et al: ‘Advanced frequency support strategy of photovoltaic system considering changing working conditions’, IET Gener. Transm. Distrib., 2018, 12, (2), pp. 363370.
    15. 15)
      • 6. Gladwin, D., Todd, R., Forsyth, A., et al: ‘Battery energy storage systems for the electricity grid: UK research facilities’. 8th IET Int. Conf. on Power Electronics, Machines and Drives (PEMD 2016), 2016, pp. 66.
    16. 16)
      • 21. Dragicevic, T., Guerrero, J.M., Vasquez, J.C.: ‘A distributed control strategy for coordination of an autonomous LVDC microgrid based on power-line signaling’, IEEE Trans. Ind. Electron., 2014, 61, (7), pp. 33133326.
    17. 17)
      • 4. Fu, Y., Wang, Y., Zhang, X.: ‘Integrated wind turbine controller with virtual inertia and primary frequency responses for grid dynamic frequency support’, IET Renew. Power Gener., 2017, 11, (8), pp. 11291137.
    18. 18)
      • 20. Giles, A.D., Reguera, L., Roscoe, A.J.: ‘Optimal controller gains for inner current controllers in VSC inverters’, no. 4, p. 5.
    19. 19)
      • 15. Adhikari, S., Xu, Q., Tang, Y., et al: ‘Decentralized control of DC microgrid clusters’. 2017 IEEE 3rd Int. Futur. Energy Electron. Conf. ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, Taiwan, 2017, pp. 567572.
    20. 20)
      • 16. Nuutinen, P., Lana, A., Hakala, T.: ‘Lvdc rules – technical specifications for public lvdc distribution network’. Cired 2017, no. June, 2017, pp. 1215.
    21. 21)
      • 10. Dragicevic, T., Lu, X., Vasquez, J., et al: ‘DC microgrids – part I: a review of control strategies and stabilization techniques’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 48764891.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9360
Loading

Related content

content/journals/10.1049/joe.2018.9360
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address