Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Multiple DRPs to maximise the techno-economic benefits of the distribution network

This study addresses a demand response programme (DRP) model considering the price elasticity of demand to determine the peak scheduling for different categories of consumers with the possibility of load shifting. The main objective is to minimise daily energy loss and improvement in the node voltage profile of distribution system along with the economic benefits of different stakeholders. The proposed work helps in appropriate selection of DRP for different feeders/consumers. The investigations are performed on a benchmark 33-bus test distribution system and comprehensive analysis is illustrated through simulation results.

References

    1. 1)
      • 12. Heydarian-Forushani, E., Parsa Moghaddam, M., Sheikh-El-Eslami, M.K., et al: ‘Risk constrained offering strategy of wind power producers considering intraday demand response exchange’. 2016 IEEE/PES Transmission and Distribution Conf. Exposition (T&D), Dallas, TX, 2016, p. 1.
    2. 2)
      • 4. Saele, H., Grande, O.S.: ‘Demand response from household customers: experiences from a pilot study in Norway’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 102109.
    3. 3)
      • 18. Parsa Moghaddam, M., Abdollahi, A., Rashidinejad, M.: ‘Flexible demand response programs modeling in competitive electricity markets’, Appl. Energy, 2011, 88, pp. 32573269.
    4. 4)
      • 1. ISGAN. Report.: ‘Dynamic tariff structure for demand side management and demand response’. Available at www.iea.isgan.org, May 2013.
    5. 5)
      • 11. Roscoe, A.J., Ault, G.: ‘Supporting high penetrations of renewable generation via implementation of real-time electricity pricing and demand response’, IET Renew. Power Gener., 2010, 4, (4), pp. 369382.
    6. 6)
      • 10. Mohsenian-Rad, A.H., Leon-Garcia, A.: ‘Optimal residential load control with price prediction in real-time electricity pricing environments’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 120133.
    7. 7)
      • 17. Maigha Crow, M.L.: ‘Cost-constrained dynamic optimal electric vehicle charging’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 716724.
    8. 8)
      • 7. Safdarian, A., Fotuhi-Firuzabad, M., Lehtonen, M.: ‘A distributed algorithm for managing residential demand response in smart grids’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 23852393.
    9. 9)
      • 9. Haider, H.T., See, O.H., Elmenreich, W.: ‘Review of residential demand response of smart grid’, Renew. Sustain. Energy Rev., 2016, 59, pp. 166178.
    10. 10)
      • 3. Medina, J., Muller, N., Roytelman, I.: ‘Demand response and distribution grid operations: opportunities and challenges’, IEEE Trans. Smart Grid, 2010, 1, (2), pp. 193198.
    11. 11)
      • 14. Liu, Y., Yuen, C., Ul Hassan, N., et al: ‘Electricity cost minimization for a microgrid with distributed energy resource under different information availability’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 25712583.
    12. 12)
      • 6. Palensky, P., Dietrich, D.: ‘Demand side management: demand response, intelligent energy systems, and smart loads’, IEEE Trans. Ind. Inf., 2011, 7, (3), pp. 381388.
    13. 13)
      • 2. FERC. Staff report.: ‘Assessment of demand response and advanced metering’. Available at www.FERC.gov, December 2012.
    14. 14)
      • 19. Kirschen, D.S., Strbac, G., Cumperayot, P., et al: ‘Factoring the elasticity of demand in electricity prices’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 612617.
    15. 15)
      • 16. Rawat, T., Niazi, K.R.: ‘Comparison of EV smart charging strategies from multiple stakeholders’ perception’, J. Eng., 2017, 13, pp. 13561361.
    16. 16)
      • 20. Baran, M.E., Wu, F.F.: ‘Network reconfiguration in distribution systems for loss reduction and load balancing’, IEEE Trans. Power Delivery., 1989, 4, (2), pp. 14011407.
    17. 17)
      • 8. Safdarian, A., Fotuhi-Firuzabad, M., Lehtonen, M.: ‘Benefits of demand response on operation of distribution networks: a case study’, IEEE Syst. J., 2016, 10, (1), pp. 189197.
    18. 18)
      • 5. Molina-Garcia, A., Kessler, M., Fuentes, J.A., et al: ‘Probabilistic characterization of thermostatically controlled loads to model the impact of demand response programs’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 241251.
    19. 19)
      • 15. Shao, S., Pipattanasomporn, M., Rahman, S.: ‘Demand response as a load shaping tool in an intelligent grid with electric vehicles’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 624631.
    20. 20)
      • 13. Zhang, C., Xu, Y., Dong, Z.Y., et al: ‘Robust coordination of distributed generation and price-based demand response in microgrids’, IEEE Trans. Smart Grid, 2018, 9, (5), pp. 42364247.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9336
Loading

Related content

content/journals/10.1049/joe.2018.9336
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address