Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Absolute calibration device of the vibration sensor

Vibration sensor calibration is performed using the absolute calibration method and the comparison calibration method. The comparative calibration method is used to take a carefully calibrated benchmark to the measured sensor and the vibration sensor for a contrast test, the use of standard sensors requires regular inspection to traceability to national standards to ensure the reliability and accuracy of dissemination. From the measurement perspective, using the absolute calibration method to calibrate a laser interference vibration acceleration sensor can achieve high precision, wide field, high reliability calibration to ensure the sensor of high accuracy, vibration signal high reliability is of great significance. The vibration method of absolute calibration is based on laser interference technology research, put forward in the development of the laser absolute method based on the technology of vibration calibration device, a further optimised method of the absolute calibration device, the mathematical model is used to improve the technical indicators and to provide reliable technical guarantee for vibration transducer calibration.

References

    1. 1)
      • 10. Oota, A., Usuda, T., Nozato, H.: ‘Correction and evaluation of the effect due to parasitic motion on primary accelerometer calibration’, Measurement, 2010, 43, (5), pp. 719725.
    2. 2)
      • 8. Bruns, T., Link, A., Täubner, A.: ‘The influence of different vibration exciter systems on high frequency primary calibration of single-ended accelerometers: II’, Metrologia, 2012, 49, (1), p. 27.
    3. 3)
      • 17. Zhang, Q., Zhu, T., Zhang, J., et al: ‘Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature’, IEEE Photonics Technol. Lett., 2013, 25, (18), pp. 17511753.
    4. 4)
      • 2. Schopp, P., Klingbeil, L., Peters, C., et al: ‘Design, geometry evaluation, and calibration of a gyroscope-free inertial measurement unit’, Sens. Actuators A, 2010, 162, (2), pp. 379387.
    5. 5)
      • 11. Krause, A.G., Winger, M., Blasius, T.D., et al: ‘A high-resolution microship optomechanical accelerometer’, Nat. Photonics, 2012, 6, pp. 768772.
    6. 6)
      • 13. Gao, L., Zhu, T., Deng, M., et al: ‘Long-period fiber grating within d-shaped fiber using magnetic fluid for magnetic-field detection’, IEEE Photonics J., 2013, 4, (6), pp. 20952104.
    7. 7)
      • 1. Sun, Q., Zhou, L., Cai, C., et al: ‘A novel implementation of homodyne time interval analysis method for primary vibration calibration’. Seventh Int. Symp. on Precision Engineering Measurements and Instrumentation, Yunnan, China, 2011, pp. 83212K-183212K-6.
    8. 8)
      • 16. Zhu, T., Zhang, Q., Shi, L., et al: ‘All-fiber acceleration sensor with temperature self-compensation’, Proc. SPIE, 2013, 8421, pp. 84210X-184210X-4.
    9. 9)
      • 6. GB/T 20485.11-2006: ‘Vibration and impact sensor calibration method part 11: The vibration of laser interferometry is absolutely calibrated’, 2006.
    10. 10)
      • 5. GB/T 20485.1-2008: ‘Vibration and impact sensor calibration method part 1: basic concepts’, 2008.
    11. 11)
      • 14. Lu, P., Xu, Y., Baset, F., et al: ‘In-line fiber microcantilever vibration sensor’, Appl. Phys. Lett., 2013, 103, pp. 211113.1211113.5.
    12. 12)
      • 18. Zhang, Q., Zhu, T., Yin, F., et al: ‘A real-time inclinometer based on an etched fiber Bragg grating connected to hollow-core fiber’, Proc. SPIE, 2014, 9157, pp. 91579U-191579U-4.
    13. 13)
      • 9. Su, J., Wan, W., Yang, L., et al: ‘Study on a novel algorism of phase unwrapping for interferogram processing’. 5th Int. Symp. on Advanced Optical Manufacturing and Testing Technologies, Dalian, China, 2010, pp. 765670765670-6.
    14. 14)
      • 12. Wang, W.H., Yu, Q.X., Li, F., et al: ‘Temperature- insensitive pressure sensor based on all-fused-si1ica extrinsic Fabry-Perot optical fiber interferometer’, IEEE Sens. J., 2012, 12, (7), pp. 24252429.
    15. 15)
      • 7. Požar, T., Možina, J.: ‘Enhanced ellipse fitting in a two-detector homodyne quadrature laser interferometer’, Meas. Sci. Technol., 2011, 22, (8), p. 085301.
    16. 16)
      • 15. Zhang, Q., Zhu, T., Hou, Y., et al: ‘All-fiber vibration sensor based on a Fabry–Perot interferometer and a microstructure beam’, J. Opt. Soc. Am. B, 2013, 30, (5), pp. 12111215.
    17. 17)
      • 4. Von Martens, H.J.: ‘Applicability of ISO standard methods to vibration measurements at high frequencies and high accelerations’. 10th Int. Conf. on Vibration Measurements by Laser and Noncontact Techniques-Aivela 2012, Ancona, Italy, 2012, 1457, (1), pp. 181199.
    18. 18)
      • 3. Toyoshima, M., Jono, T., Yamakawa, S., et al: ‘In-orbit measurements of spacecraft microvibrations for satellite laser communication links’, Opt. Eng., 2010, 49, (8), pp. 083604083604-10.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9091
Loading

Related content

content/journals/10.1049/joe.2018.9091
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address