access icon openaccess Fault analysis of industrial robots based on self-organised critical theory

Industrial robots, as a structurally sophisticated mechatronics system, have a high cost of routine maintenance and repair. Repairs after fault require the corresponding manpower and material resources, and have hysteresis. If the fault can be predicted in a timely and accurate manner, the maintenance process can be carried out in advance, and the hidden dangers can be eliminated to fundamentally solve the fault problem. Based on the self-organised critical theory (SOC theory), this article draws lessons from its self-organisation evolution model and uses the self-organised criticality of industrial robot fault to establish an autoregressive moving average model (ARMA model) for industrial robots. According to the analysis of residual value and the explanation for the faults of industrial robots, find ways and means to prevent and reduce faults.

Inspec keywords: mechatronics; maintenance engineering; self-organised criticality; autoregressive moving average processes; industrial robots

Other keywords: material resources; corresponding manpower; routine maintenance; structurally sophisticated mechatronics system; maintenance process; industrial robot fault; self-organised criticality; self-organisation evolution model; self-organised critical theory; fault problem; fault analysis; repair; SOC theory; industrial robots

Subjects: Robotics; Statistics; Other topics in statistics

References

    1. 1)
      • 7. Anderson, J., Garrett, C.K., Hopkins, B.: ‘Garden of Eden partitions in the sand pile and related models’, Theor. Comput. Sci., 2017, 694, pp. 1020.
    2. 2)
      • 17. Cai, Z.X.: ‘Fundamentals of robotics’ (China Machine Press, Beijing, China, 2017, 2nd edn.), pp. 3142.
    3. 3)
      • 12. Feng, Z.P., Zuo, M.J.: ‘Fault diagnosis of planetary gearboxes via torsional vibration signal analysis’, Mech. Syst. Signal Process., 2013, 36, (2), pp. 401421.
    4. 4)
      • 9. Rubio, J.J.: ‘Robust feedback linearization for nonlinear processes control’, ISA Trans., 2018, 74, pp. 155164.
    5. 5)
      • 1. Luh, G.C., Cheng, W.C.: ‘Immune model-based fault diagnosis’, Math. Comput. Simul., 2005, 67, pp. 515539.
    6. 6)
      • 6. Perrot, K., Rémila, É.: ‘Kadanoff sand pile model. Avalanche structure and wave shape’, Theor. Comput. Sci., 2013, 504, (16), pp. 5272.
    7. 7)
      • 13. Zhao, H.M., Deng, W., Yang, X.H., et al: ‘Research on a vibration signal analysis method for motor bearing’, Optik, 2016, 127, (20), pp. 1001410023.
    8. 8)
      • 16. Xu, L., Gu, W.X., Zhang, X.M.: ‘Advances in machine learning and cybernetics’ (Springer Berlin Heidelberg Press, Berlin, Germany, 2006).
    9. 9)
      • 4. Bak, P., Tang, C., Wiesenfeld, K.: ‘Self-organized criticality’, Phys. Rev. A, 1988, 38, (1), pp. 364374.
    10. 10)
      • 11. Recalde, L.F., Hong, Y.: ‘Control performance monitoring of state-dependent nonlinear processes’, IFAC-PapersOnLine, 2017, 50, (1), pp. 1131311318.
    11. 11)
      • 14. Korun, M., Vodenik, B., Zorko, B.: ‘An alternative approach to the decision threshold’, Appl. Radiat. Isot., 2018, 134, pp. 5658.
    12. 12)
      • 15. Lu, L., Huang, Q.X., Lou, Z.Z.: ‘On the distance spectra of threshold graphs’, Linear Algebr. Appl., 2018, 553, pp. 223237.
    13. 13)
      • 5. Bak, P., Tang, C., Wiesenfeld, K.: ‘Self-organized criticality: an explanation of 1/f noise’, Phys. Rev. Lett., 1987, 59, (4), pp. 381384.
    14. 14)
      • 2. Michał, Z.: ‘Online fault detection of a mobile robot with a particle filter’, Neurocomputing, 2014, 126, (27), pp. 151165.
    15. 15)
      • 10. González-Carbajal, J., García-Vallejo, D., Domínguez, J.: ‘Nonliear modelling and simulation of vibrocompaction processes’, Int. J. Non-Linear Mech., 2018, 102, pp. 101111.
    16. 16)
      • 8. Chen, H.S., Wu, G.Y.: ‘Effects of pair correlation on mean-field theory of BTW sand pile model’, Physica A, Stat. Mech. Appl., 2010, 289, (12), pp. 23392350.
    17. 17)
      • 3. Eski, I., Erkaya, S., Yildirim, S.: ‘Fault detection on robot manipulators using artificial neural networks’, Robot. Comput.-Integr. Manuf., 2011, 27, (1), pp. 115123.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9069
Loading

Related content

content/journals/10.1049/joe.2018.9069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading