Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Parameters design for a non-linear absorber based on phase trajectory analysis

The performance of non-linear absorbers for suppression of the structure vibrations depends on the setting of the absorbers' parameters to a certain extent. A slowly varying dynamical system under investigation in the existing work is comprised of a linear oscillator coupled with an attached non-linear absorber called non-linear energy sink (NES). Slowly varying equations of the coupled system are achieved first by using the complex averaging method, and trajectory features of the slowly varying system are analysed. On that basis, the non-linear cubic stiffness design method is proposed. Considering that different damping coefficients of the NES impose a large impact on both system energy transfer and energy dissipation between the main structure and the NES, necessary damping conditions for the targeted energy transfer (TET) are obtained by using the phase trajectory analysis. With the proposed method, structure parameters of the NES are designed to get maximum absorbing effects. Finally, all these conclusions about parameters design for the NES are verified by simulation analysis. The simulation results demonstrate that the optimal vibration reduction effectiveness can be achieved with reasonably designed stiffness and damping.

References

    1. 1)
      • 13. Sigalov, G., Gendelman, O.V., Al-shudeifat, M.A., et al: ‘Resonance captures and targeted energy transfers in an inertially-coupled rotational nonlinear energy sink’, Nonlinear Dyn., 2012, 69, (4), pp. 16931704.
    2. 2)
      • 2. Vakakis, A.F., Gendelman, O.: ‘Energy pumping in nonlinear mechanical oscillators: part II-resonance capture’, J. Appl. Mech., 2001, 68, (1), pp. 4248.
    3. 3)
      • 4. Lamarque, C.H., Savadkoohi, A.T., Naudan, M.: ‘Multi-scale energy exchanges between a nonlinear oscillator of Bouc-Wen type and another coupled nonlinear system’, Eur. Phys. J. Spec. Top., 2013, 222, (7), pp. 16171636.
    4. 4)
      • 28. Kani, M., Khadem, S.E., Pashaei, M.H.: ‘Design and performance analysis of a nonlinear energy sink attached to a beam with different support conditions’, Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., 2016, 230, (4), pp. 527542.
    5. 5)
      • 7. Anubi, O.M., Crane, O.M., Carl, D.: ‘A new active variable stiffness suspension system using a nonlinear energy sink-based controller’, Veh. Syst. Dyn., 2013, 51, (10), pp. 15881602.
    6. 6)
      • 25. Georgiades, F., Vakakis, A.F.: ‘Dynamics of a linear beam with an attached local nonlinear energy sink’, Commun. Nonlinear Sci. Numer. Simul., 2007, 12, (5), pp. 643651.
    7. 7)
      • 16. Mikhlin, Y.V., Perepelkin, N.V.: ‘Non-linear normal modes and their applications in mechanical systems’, Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., 2011, 225, (10), pp. 23692384.
    8. 8)
      • 1. Gendelman, O.V., Manevitch, L., Vakakis, A.F.: ‘Energy pumping in coupled mechanical oscillators, part I: dynamics of the underlying Hamiltonian systems’, J. Appl. Mech., 2001, 68, (1), pp. 3441.
    9. 9)
      • 29. Gendelman, O.V., Alloni, A.: ‘Dynamics of forced system with vibro-impact energy sink’, J. Sound Vib., 2015, 358, pp. 301314.
    10. 10)
      • 22. Starosvetsky, Y., Gendelman, O.V.: ‘Response regimes in forced system with non-linear energy sink: quasi-periodic and random forcing’, Nonlinear Dyn., 2011, 64, (1–2), pp. 177195.
    11. 11)
      • 30. Ji, J.C.: ‘Design of a nonlinear vibration absorber using three-to-one internal resonances’, Mech. Syst. Signal Process. ., 2014, 42, (1–2), pp. 236246.
    12. 12)
      • 11. Quinn, D.D., Hubbard, S., Wierschem, N., et al: ‘Equivalent modal damping, stiffening and energy exchanges in multi-degree-of-freedom systems with strongly nonlinear attachments’, Proc. Inst. Mech. Eng. K, J. Multi-body Dyn., 2012, 226, (2), pp. 122146.
    13. 13)
      • 20. Manevitch, L.I.: ‘The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables’, Nonlinear Dyn., 2001, 25, (2), pp. 95109.
    14. 14)
      • 15. Chen, H., Kurt, M., Lee, Y.S., et al: ‘Experimental system identification of the dynamics of a vibro-impact beam with a view towards structural health monitoring and damage detection’, Mech. Syst. Signal Process. ., 2014, 46, (1), pp. 91113.
    15. 15)
      • 24. Manevitch, L.I., Musienko, A.I.: ‘Limiting phase trajectories and energy exchange between a harmonic oscillator and external force’, Nonlinear Dyn., 2009, 58, (4), pp. 633642.
    16. 16)
      • 23. Domany, E., Gendelman, O.V.: ‘Dynamic responses and mitigation of limit cycle oscillations in Van der Pol-Duffing oscillator with nonlinear energy sink’, J. Sound Vib., 2013, 332, (21), pp. 54895507.
    17. 17)
      • 10. Al-shudeifat, M.A.: ‘Asymmetric magnet-based nonlinear energy sink’, J. Comput. Nonlinear Dyn., 2014, 10, (1), pp. 502505.
    18. 18)
      • 3. Zhang, Y.W., Zang, J., Yang, T.Z., et al: ‘Vibration suppression of an axially moving string with transverse wind loadings by a nonlinear energy sink’, Math. Probl. Eng., 2013, 2013, pp. 17.
    19. 19)
      • 21. Manevitch, L.I.: ‘New approach to beating phenomenon in coupled nonlinear oscillatory chains’, Arch. Appl. Mech., 2006, 77, (5), pp. 301312.
    20. 20)
      • 19. Manevitch, L.I., Musienko, A.I., Lamarque, C.H.: ‘New analytical approach to energy pumping problem in strongly nonhomogeneous 2dof systems’, Meccanica., 2006, 42, (1), pp. 7783.
    21. 21)
      • 12. Al-shudeifat, M.A.: ‘Highly efficient nonlinear energy sink’, Nonlinear Dyn., 2014, 76, (4), pp. 19051920.
    22. 22)
      • 8. Lee, Y.S., Kerschen, G., Vakakis, A.F., et al: ‘Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment’, Phys. D, Nonlinear Phenom., 2005, 204, (1), pp. 4169.
    23. 23)
      • 27. Bab, S., Khadem, S.E., Shahgholi, M.: ‘Vibration attenuation of a rotor supported by journal bearings with nonlinear suspensions under mass eccentricity force using nonlinear energy sink’, Meccanica., 2015, 50, (9), pp. 24412460.
    24. 24)
      • 5. Guo, H.L., Chen, Y.S., Yang, T.Z.: ‘Limit cycle oscillation suppression of 2-DOF airfoil using nonlinear energy sink’, Appl. Math. Mech., 2013, 34, (10), pp. 12771290.
    25. 25)
      • 26. Samani, F.S., Pellicano, F.: ‘Vibration reduction of beams under successive traveling loads by means of linear and nonlinear dynamic absorbers’, J. Sound Vib., 2012, 331, (10), pp. 22722290.
    26. 26)
      • 17. Gendelman, O.V., Sapsis, T., Vakakis, A.F.: ‘Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators’, J. Sound Vib., 2011, 330, (1), pp. 18.
    27. 27)
      • 6. Lee, Y.S., Vakakis, A.F., Bergman, L.A., et al: ‘Passive non-linear targeted energy transfer and its applications to vibration absorption: a review’, Proc. Inst. Mech. Eng. Part K, J. Multi-body Dyn., 2008, 222, (2), pp. 77134.
    28. 28)
      • 9. Vakakis, A.F., Al-shudeifat, M.A., Hasan, M.A.: ‘Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment’, Meccanica., 2014, 49, (10), pp. 23752397.
    29. 29)
      • 14. Hasan, M.A., Starosvetsky, Y., Vakakis, A.F., et al: ‘Nonlinear targeted energy transfer and macroscopic analog of the quantum Landau-Zener effect in coupled granular chains’, Phys. D, Nonlinear Phenom., 2013, 252, pp. 4658.
    30. 30)
      • 18. Ecker, H., Pumhossel, T.: ‘Vibration suppression and energy transfer by parametric excitation in drive systems’, Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci., 2012, 226, (8), pp. 20002014.
    31. 31)
      • 31. Andersen, D., Starosvetsky, Y., Vakakis, A.: ‘Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping’, Nonlinear Dyn., 2012, 67, (1), pp. 807827.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9039
Loading

Related content

content/journals/10.1049/joe.2018.9039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address