access icon openaccess Active vibration control of smart flexible piezoelectric beam with a tip mass using hybrid FX-VSSLMS algorithm

This study concerns adaptive feedforward and hybrid (combined feedback and feedforward) control systems for active vibration suppression of smart flexible beam with a tip mass. By analysing traditional feedforward filtered-X least mean square (FXLMS) algorithm and filtered-X variable step size least mean square (FX-VSSLMS) algorithm, a new hybrid FX-VSSLMS algorithm is developed to improve the control performance of feedforward controllers. A stainless steel beam with a tip mass is employed to simulate flexible robot arm with varying loads. Piezoelectric actuators and sensors are attached to the surface of the beam. Comparison experiments show the effectiveness and benefits of the proposed hybrid FX-VSSLMS method.

Inspec keywords: flexible structures; piezoelectric actuators; flexible manipulators; beams (structures); feedforward; vibration control; feedback; least mean squares methods

Other keywords: active vibration suppression; hybrid control systems; piezoelectric actuators; stainless steel beam; flexible robot arm simulation; tip mass; adaptive feedforward control systems; control performance; sensors; smart flexible piezoelectric beam; active vibration control; combined feedback and feedforward control systems; filtered-X variable step size least mean square algorithm; traditional feedforward filtered-X least mean square algorithm; hybrid FX-VSSLMS algorithm

Subjects: Robot and manipulator mechanics; Numerical analysis; Manipulators; Mechanical variables control; Vibrations and shock waves (mechanical engineering); Electric actuators and final control equipment; Interpolation and function approximation (numerical analysis); General shapes and structures

References

    1. 1)
      • 4. He, X., He, W., Qin, H., et al: ‘Boundary vibration control for a flexible Timoshenko robotic manipulator’, IET Control Theory Applic., 2018, 12, (7), pp. 875882.
    2. 2)
      • 1. Flores-Abad, A., Ma, O., Pham, K., et al: ‘A review of space robotics technologies for on-orbit servicing’, Prog. Aerosp. Sci., 2014, 68, pp. 126.
    3. 3)
      • 5. Huang, Q., Luo, J., Li, H., et al: ‘Analysis and implementation of adaptive filtered-X LMS algorithm based on reference signal self-extraction’, J. Vibroeng., 2014, 16, (5), pp. 23412354.
    4. 4)
      • 6. JIE, W.-J., WENG, X.-T., LI, C.-B.: ‘Research on active control of double-layer vibration isolation system based on FxLMS algorithm’, J. Ordnance Equip. Eng., 2016, 37, (6), pp. 166169.
    5. 5)
      • 7. Ardekani, I.T., Abdulla, W.H.: ‘Theoretical convergence analysis of FxLMS algorithm’, Signal Process., 2010, 90, (12), pp. 30463055.
    6. 6)
      • 3. Azar, A.T., Zhu, Q., Khamis, A., et al: ‘Control design approaches for parallel robot manipulators’, Int. J. Model. Identif. Control, 2017, 28, (3), pp. 199211.
    7. 7)
      • 2. He, W., Ouyang, Y., Hong, J.: ‘Vibration control of a flexible robotic manipulator in the presence of input deadzone’, IEEE Trans. Ind. Inf., 2017, 13, (1), pp. 4859.
    8. 8)
      • 9. Chang, D.C., Chu, F.T.: ‘Feedforward active noise control with a new variable tap-length and step-size filtered-x LMS algorithm’, IEEE/ACM Trans. Audio Speech Lang. Process., 2014, 22, (2), pp. 542555.
    9. 9)
      • 10. Wu, L., Qiu, X., Guo, Y.: ‘A generalized leaky FxLMS algorithm for tuning the waterbed effect of feedback active noise control systems’, Mech. Syst. Signal Process., 2018, 106, pp. 1323.
    10. 10)
      • 11. Parra, E.G.M., Méndez, J.E.Q.: ‘Adaptive feedback feedforward compensation for disturbance rejection in a one DOF flexible structure: comparative analysis’, Rev. UIS Ingenierías, 2018, 17, (1), pp. 105114.
    11. 11)
      • 8. Gomathi, K., Saravanan, V., Santhiyakumari, N.: ‘Variable step size for improving convergence of FxLMS algorithm’, Proc. Technol., 2016, 25, pp. 420426.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9033
Loading

Related content

content/journals/10.1049/joe.2018.9033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading