http://iet.metastore.ingenta.com
1887

access icon openaccess Hydraulic system fault diagnosis method based on a multi-feature fusion support vector machine

  • PDF
    799.8310546875Kb
  • XML
    54.2578125Kb
  • HTML
    71.95703125Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.9028/JOE.2018.9028.html;jsessionid=2fllaq2eb695j.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.9028&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Vásquez, S., Kinnaert, M., Pintelon, R.: ‘Active fault diagnosis on a hydraulic pitch system based on frequency-domain identification’, IEEE Trans. Control Syst. Technol., 2017, 99, pp. 116.
    2. 2)
      • 2. Huang, D., Ke, L., Chu, X., et al: ‘Fault diagnosis for the motor drive system of urban transit based on improved hidden Markov model’, Microelectron. Reliab., 2018, 82, pp. 179189.
    3. 3)
      • 3. Youssef, F.B., Sbita, L.: ‘Sensors fault diagnosis and fault tolerant control for grid connected PV system’, Int. J. Hydrog. Energy, 2017, 42, (13), pp. 89628971.
    4. 4)
      • 4. Zhao, Z., Xu, Q., Jia, M.: ‘Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis’, Neural Comput. Appl., 2016, 27, (2), pp. 375385.
    5. 5)
      • 5. Zhang, Q., Hu, N., Li, H.: ‘Fault diagnosis of the mine hoist brake based on GA-BP neural network’, J. Liaoning Tech. Univ., 2016, 35, (2), pp. 155159.
    6. 6)
      • 6. Zhou, W.P., Sun, D.L., Wang, J.L.: ‘Fault diagnosis of ship power supply system based on grey correlation improved BP neural network’. IEEE Chinese Automation Congress (CAC), Wuhang, China, November 2015, pp. 12031208.
    7. 7)
      • 7. Sharma, R., Prasanna, S.R.M., Bhukya, R.K., et al: ‘Analysis of the intrinsic mode functions for speaker information’, Speech Commun., 2017, 91, (1), pp. 116.
    8. 8)
      • 8. Zhang, X., Mei, C., Chen, D., et al: ‘Feature selection in mixed data: a method using a novel fuzzy rough set-based information entropy’, Pattern Recognit., 2016, 56, (1), pp. 115.
    9. 9)
      • 9. Iosifidis, A., Gabbouj, M.: ‘Multi-class support vector machine classifiers using intrinsic and penalty graphs’, Pattern Recognit., 2016, 55, pp. 231246.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9028
Loading

Related content

content/journals/10.1049/joe.2018.9028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address