Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess New structure of pneumatic networks actuators for soft robotics

Pneumatic actuators (referred to as pneu-nets) are drawing increasing attention due to their high customisability, ease of fabrication and innate softness. The actuator's ability to bend is one of the important parameters characterising its performance and related to its structure. Some structures are developed. In this work, a new structure (NS) pneu-nets is developed, and its bending ability is compared with the currently common Mosadegh pneu-nets structure (developed by Mosadegh). These two are analysed in two aspects: the trajectories of the pneu-nets actuator's tip, and the defined angle of bending. The results indicate that the NS pneu-nets actuators are able to achieve greater bending at higher pressures and can be lightweight. These pneumatic actuators provide improved structure for soft robotics.

References

    1. 1)
      • 1. Rus, D., Michael, T.T.: ‘Design, fabrication and control of soft robots’, Nature, 2015, 521, (7553), p. 467.
    2. 2)
      • 13. Yap, H.K., Ng, H.Y., Yeow, C.H.: ‘High-force soft printable pneumatics for soft robotic applications’, Soft Robot., 2016, 3, (3), pp. 144158.
    3. 3)
      • 6. Otake, M., Kagami, Y., Inaba, M., et al: ‘Motion design of a starfish-shaped gel robot made of electro-active polymer gel’, Robot. Auton. Syst., 2002, 40, (2), pp. 185191.
    4. 4)
      • 22. Eichhorn, M., Ament, C., Nguyen, T.T.: ‘Modelling of the 4-axis kinematic manipulator airarm driven by pneumatic muscle actuators’. IEEE Int. Conf. on Control and Automation, Christchuch, 2009, pp. 13011307.
    5. 5)
      • 20. Polygerinos, P., Lyne, S., Wang, Z., et al: ‘Towards a soft pneumatic glove for hand rehabilitation’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Tokyo, Japan, 2013, pp. 15121517.
    6. 6)
      • 11. Palleau, E., Morales, D., Dickey, M.D., et al: ‘Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting’, Nat. Commun., 2013, 4, p. 2257.
    7. 7)
      • 16. Tsagarakis, N., Caldwell, D.G.: ‘Improved modelling and assessment of pneumatic muscle actuators’. IEEE Int. Conf. on Robotics and Automation, San Francisco, USA, 2000, pp. 36413646.
    8. 8)
      • 5. Lee, H., Xia, C., Fang, N.X.: ‘First jump of microgel: actuation speed enhancement by elastic instability’, Soft Mat., 2010, 6, (18), pp. 43424345.
    9. 9)
      • 2. Shi, L., Guo, S., Li, M., et al: ‘A novel soft biomimetic microrobot with two motion attitudes’, Sensors, 2012, 12, (12), pp. 1673216758.
    10. 10)
      • 18. Shepherd, R.F., Ilievski, F., Choi, W., et al: ‘Multigait soft robot’, Proc. Natl. Acad. Sci., 2011, 108, (51), pp. 2040020403.
    11. 11)
      • 23. Nishioka, Y., Uesu, M., Tsuboi, H., et al: ‘Development of a pneumatic soft actuator with pleated inflatable structures’, Adv. Robot., 2017, 31, (14), pp. 753762.
    12. 12)
      • 3. Stokes, A.A., Shepherd, R.F., Morin, S.A., et al: ‘A hybrid combining hard and soft robots’, Soft Robot., 2014, 1, (1), pp. 7074.
    13. 13)
      • 7. Brown, E., Rodenberg, N., Amend, J., et al: ‘Universal robotic gripper based on the jamming of granular material’, Proc. Natl. Acad. Sci., 2010, 107, (44), pp. 1880918814.
    14. 14)
      • 9. Cui, Z., Jiang, H.: ‘Design and implementation of thunniform robotic fish with variable body stiffness’, Int. J. Robot. Autom., 2017, 32, (2), pp. 109116, DOI: 10.2316/Journal.206.2017.2.206-4572.
    15. 15)
      • 17. Sun, Y., Song, Y.S., Paik, J.: ‘Characterization of silicone rubber based soft pneumatic actuators’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Tokyo, Japan, 2013, pp. 44464453.
    16. 16)
      • 12. Trivedi, D., Rahn, C.D., Kier, W.M., et al: ‘Soft robotics: biological inspiration, state of the art, and future research’, Appl. Bionics Biomech., 2008, 5, (3), pp. 99117.
    17. 17)
      • 21. Shapiro, Y., Wolf, A., Gabor, K.: ‘Bi-bellows: pneumatic bending actuator’, Sens. Actuators A, 2011, 167, pp. 484494.
    18. 18)
      • 10. Lin, H.T., Leisk, G.G., Trimmer, B.: ‘GoQBot: a caterpillar-inspired soft-bodied rolling robot’, Bioinspiration Biomimetics, 2011, 6, (2), p. 026007.
    19. 19)
      • 4. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., et al: ‘Soft robotics for chemists’, Angew. Chem., 2011, 123, (8), pp. 19301935.
    20. 20)
      • 14. Li, Y., Maeda, Y., Hashimoto, M.: ‘Lightweight, soft variable stiffness gel spats for walking assistance’, Int. J. Adv. Robot. Syst., 2015, 12, pp. 111.
    21. 21)
      • 19. Martinez, R.V., Branch, J.L., Fish, C.R., et al: ‘Robotic tentacles with three-dimensional mobility based on flexible elastomers’, Adv. Mater., 2013, 25, (2), pp. 205212.
    22. 22)
      • 8. Shepherd, R.F., Stokes, A.A., Freake, J., et al: ‘Using explosions to power a soft robot’, Angew. Chem., 2013, 125, (10), pp. 29642968.
    23. 23)
      • 15. Mosadegh, B., Polygerinos, P., Keplinger, C., et al: ‘Pneumatic networks for soft robotics that actuate rapidly’, Adv. Funct. Mater., 2014, 24, (15), pp. 21632170.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.9023
Loading

Related content

content/journals/10.1049/joe.2018.9023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address