http://iet.metastore.ingenta.com
1887

access icon openaccess Fault diagnosis approach of rolling bearing based on NA-MEMD and FRCMAC

  • XML
    109.7021484375Kb
  • HTML
    155.958984375Kb
  • PDF
    2.4445953369140625MB
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8991/JOE.2018.8991.html;jsessionid=64tg76cpj0scs.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8991&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Ur Rehman, N., Park, C., Huang, N.E., et al: ‘EMD via MEMD: multivariate noise-aided computation of standard EMD’, Adv. Adapt. Data Anal., 2013, 05, (2), p. 1350007.
    2. 2)
      • 2. Kordestani, M., Samadi, M.F., Saif, M., et al: ‘A new fault diagnosis of multifunctional spoiler system using integrated artificial neural network and discrete wavelet transform methods’, IEEE Sens. J., 2018, 18, (12), pp. 49905001.
    3. 3)
      • 3. Rehman, N., Mandic, D.P.: ‘Multivariate empirical mode decomposition’, Proc. R. Soc. A: Math., Phy. Eng. Sci., 2009, 466, (2117), pp. 12911302.
    4. 4)
      • 4. Park, C., Plank, M., Snider, J., et al: ‘EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: multivariate empirical mode decomposition analysis’, IEEE Trans. Neural Syst. Rehabil. Eng., 2014, 22, (5), pp. 10831096.
    5. 5)
      • 5. An, X., Yang, J.: ‘A method of eliminating the vibration signal noise of hydropower unit based on NA-MEMD and approximate entropy’, Proc. Inst. Mech. Eng., Part E, 2016, 231, (2), pp. 317328.
    6. 6)
      • 6. Liu, R., Yang, B., Zio, E., et al: ‘Artificial intelligence for fault diagnosis of rotating machinery: a review’, Mech. Syst. Signal Process., 2018, 108, pp. 3347.
    7. 7)
      • 7. Liu, J., Zio, E.: ‘A scalable fuzzy support vector machine for fault detection in transportation systems’, Expert Syst. Appl., 2018, 102, pp. 3643.
    8. 8)
      • 8. Wen, L., Li, X., Gao, L., et al: ‘A new convolutional neural network-based data-driven fault diagnosis method’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 59905998.
    9. 9)
      • 9. Karami, M., Wang, L.: ‘Fault detection and diagnosis for nonlinear systems: A new adaptive Gaussian mixture modeling approach’, Energy Build., 2018, 166, pp. 477488.
    10. 10)
      • 10. Ciabattoni, L., Ferracuti, F., Freddi, A., et al: ‘Statistical spectral analysis for fault diagnosis of rotating machines’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 43014310.
    11. 11)
      • 11. Zhong, J.-H., Wong, P.K., Yang, Z.-X.: ‘Fault diagnosis of rotating machinery based on multiple probabilistic classifiers’, Mech. Syst. Signal Process., 2018, 108, pp. 99114.
    12. 12)
      • 12. Zhao, M., Kang, M., Tang, B., et al: ‘Deep residual networks with dynamically weighted wavelet coefficients for fault diagnosis of planetary gearboxes’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 42904300.
    13. 13)
      • 13. Fadda, M.L., Moussaoui, A.: ‘Hybrid SOM–PCA method for modeling bearing faults detection and diagnosis’, J. Braz. Soc. Mech. Sci. Eng., 2018, 40, (5), p. 268.
    14. 14)
      • 14. Ma, S., Cheng, B., Shang, Z., et al: ‘Scattering transform and LSPTSVM based fault diagnosis of rotating machinery’, Mech. Syst. Signal Process., 2018, 104, pp. 155170.
    15. 15)
      • 15. Kuo, Y.-C., Hung, C.-P., Wu, J.-W., et al: ‘Diagnosis system design using CMAC-based scheme for automobile automatic transmission’, Int. Symp. on Computers, Consumers and Control (IS3C), Xian, China, 2016, pp. 744747.
    16. 16)
      • 16. Bin, G.F., Gao, J.J., Li, X.J., et al: ‘Early fault diagnosis of rotating machinery based on wavelet packets-empirical mode decomposition feature extraction and neural network’, Mech. Syst. Signal Process., 2012, 27, pp. 696711.
    17. 17)
      • 17. ‘Case Western Reserve University’. Available at http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website, accessed 8 January 2018.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8991
Loading

Related content

content/journals/10.1049/joe.2018.8991
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address