Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess PID–PFC control of continuous rotary electro-hydraulic servo motor applied to flight simulator

Due to the uncertainties caused by high non-linearity, friction, leakage and other external factors existing in the flight simulator with continuous rotary electro-hydraulic servo motor and the traditional control strategies discontenting with the high-performance requirements, the mathematical model of continuous rotary electro-hydraulic position servo system is established and the compound control theory combining proportional-integral-derivative (PID) and the predictive function control (PFC) method is proposed. In order to enable the servo system to estimate the influence of uncertainties and correct it by repeating online optimisation continuously, PID–PFC compound controller basing on the structure of internal model control is designed and then applied to continuous rotary electro hydraulic servo system. The simulation results show that compared with the traditional PID, PFC controller, PID–PFC compound control can effectively inhibit the interferences of the electro-hydraulic servo system, and greatly improve the response speed and tracking performances and expanding the system frequency band width. The accurate control of motor's position can be realised by applying PID–PFC compound control, which can make the servo system has stronger robustness.

References

    1. 1)
      • 13. Shen, G., Zhu, Z.C., Zhao, J.S., et al: ‘Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control’, ISA Trans., 2016, 14, (1), pp. 156171.
    2. 2)
      • 5. Rozali, S.M., Rahmat, M.F., Wahab, N.A., et al: ‘PID controller design for an industrial hydraulic actuator with servo system’. Proc. 2010 IEEE Student Conf. Research and Development, Putrajaya, Malaysia, 2010, pp. 218223.
    3. 3)
      • 24. Zhou, Y., Chen, Q.W., Hu, W.L., et al: ‘New developments of research on internal model control’, Control Theory Appl., 2004, 31, (2), pp. 481492.
    4. 4)
      • 11. Shao, J.P., Wang, Z.W., Li, J.Y., et al: ‘Rule self-tuning fuzzy PID control for electro-hydraulic position servo system’, J. Zhongnan Univ., 2010, 41, (3), pp. 960965.
    5. 5)
      • 4. Yuan, L., Cui, S., Lu, H.Y., et al: ‘Structure optimization for improving low speed performance of continuous rotary electro-hydraulic servo motor based on improved genetic algorithm’, Chin. J. Mech. Eng., 2010, 46, (12), pp. 166174.
    6. 6)
      • 27. Ma, X.P., Li, Y.P., Su, P.Z., et al: ‘Predictive functional control based on differential evolution algorithm and its dynamic performance analyses’. 2010 Chinese Control and Decision Conf., CCDC, Mianyang, China, October 2010, pp. 6568.
    7. 7)
      • 25. Bonchis, A., Corke, P.I., Rye, D.C., et al: ‘Variable structure methods in hydraulic servo systems control’, Automatica, 2001, 37, (4), pp. 589595.
    8. 8)
      • 18. Wang, C.X.: ‘The hydraulic control system’ (Mechanical Industry Press, Beijing, 2011, 1st edn.).
    9. 9)
      • 1. Shen, G., Zhu, Z.C., Li, X., et al: ‘Real-time electro-hydraulic hybrid system for structural testing subjected to vibration and force loading’, Mechatronics, 2016, 33, pp. 4970.
    10. 10)
      • 2. Toufighi, M.H., Sadati, S.H., Najafi, F., et al: ‘Simulation and experimentation of a precise nonlinear tracking control algorithm for a rotary servo-hydraulic system with minimum sensors’, J. Dyn. Syst. Meas. Control, 2013, 135, (6), pp. 2428.
    11. 11)
      • 21. Li, S.: ‘Research on predictive functional control of continuous rotary electro-hydraulic servo motor’. MA thesis, Harbin University of Science and Technology, March 2017.
    12. 12)
      • 17. Yao, J.Y., Deng, W.X., Jiao, Z.X., et al: ‘Adaptive control of hydraulic actuators with LuGre model based friction compensation’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 64696477.
    13. 13)
      • 16. Canale, M., Fagiano, L., Milanese, M.: ‘Efficient model predictive control for nonlinear systems via functionapproximation techniques’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 19111916.
    14. 14)
      • 14. Xi, Y.G.: ‘Predictive control’ (National Defence Industry Press, Beijing, 1993, 2nd edn.).
    15. 15)
      • 10. Karimi, H.R., Xi, J.Q., Yan, F.J., et al: ‘A new electric hydraulic actuator adopted the variable displacement pump’, Asian J. Control, 2016, 18, (1), pp. 178191.
    16. 16)
      • 23. Wang, J., Gong, G., Yang, H., et al: ‘Control of bulk modulus of oil in hydraulic systems’, Proc. 2008 IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, Xian, China, 2008, pp. 13901395.
    17. 17)
      • 12. Shao, J.P., Zhang, L., Jin, Z.H., et al: ‘Fractional PID control of electro-hydraulic position servo system based on repeated control compensation’, J. Beijing Univ. Technol., 2015, 4, (12), pp. 134141.
    18. 18)
      • 8. Ma, Y.H.: ‘Research on QFT applied in continuous rotary electro-hydraulic servo motor control system’. MA thesis, Harbin Institute of Technology, 2008.
    19. 19)
      • 28. Cao, J., Ma, Y.H.: ‘Application of gray-box identification in a new continuous rotary electro-hydraulic servo motor’, J. Harbin Inst. Technol., 2009, 41, (5), pp. 4346.
    20. 20)
      • 20. Zhang, H., Liu, X., Wang, J., et al: ‘Robust H sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system’, Int. J. Adv. Manuf. Technol., 2014, 73, (5), pp. 10951104.
    21. 21)
      • 7. Shen, G., Zhu, Z.C., Zhao, J.S., et al: ‘Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control’, ISA Trans., 2016, 6, (9), pp. 6572.
    22. 22)
      • 22. Wang, X.J., Li, J.Y., Wu, B., et al: ‘Continuous rotary motor electro-hydraulic servosystem based on the zero phase error tracking controller’. The 2nd Int. Conf. Frontiers of Manufacturing and Design Science (ICFMD 2011), Taiwan, 2011, pp. 1113.
    23. 23)
      • 9. Jin, B.Q., Xiong, S.B., Cheng, Y., et al: ‘Study on buffeting suppression variable speed reaching law sliding mode control for electro-hydraulic position servo system’, J. Mech. Eng., 2013, 5, (7), pp. 541552.
    24. 24)
      • 19. Guo, J.: ‘Low-speed performance and predictive functional control of hydraulic simulator’. PhD thesis, Harbin Institute of Technology, 2009.
    25. 25)
      • 3. Cao, J., Xu, H.G.: ‘Friction characteristics of a new type of continuous rotary electro-hydraulic servomotor applied to simulator’, J. Harbin Inst. Technol. (New Series), 2008, 15, (1), pp. 8689.
    26. 26)
      • 15. Zhang, Z.H.: ‘Predictive function cascade control scheme and its application to hydraulic robot systems’. Proc. 2009 IEEE Int. Conf. Automation and Logistics, ICAL, Shenyang, China, 2009, pp. 1317.
    27. 27)
      • 26. Bessa, W.M., Dutra, M.S., Kreuzer, E., et al: ‘Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servo-system’, J. Intell. Robot. Syst., 2010, 58, (1), pp. 316.
    28. 28)
      • 6. Yao, J.Y., Jiao, Z.X., Ma, D.W.: ‘Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with back stepping’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 62856293.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8984
Loading

Related content

content/journals/10.1049/joe.2018.8984
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address