access icon openaccess Hysteretic non-linearity observer design and robust control for piezoelectric actuators

The problem of tracking control for piezoelectric actuator (PEA) is investigated in this article. In consideration of that, the control precision of PEA is being restricted due to the hysteretic effect. For the purpose of improving the tracking performance, two issues are, respectively, taken into account – the compensation of the hysteretic effect and the controller design for the PEA system. To solve these problems, first, a new hysteresis observer based on sliding mode control theory is established. The design of the observer has considered the uncertainty in PEA modelling and the exogenous disturbance. Besides, according to Lyapunov theory, the hysteresis observer can asymptotically estimate the hysteretic character with performance. Second, a fault-tolerant controller based on robust backstepping control theory is presented to make the PEA system to track the desire input. At last, numerical examples are given to verify the effectiveness of the proposed methods.

Inspec keywords: hysteresis; fault tolerant control; control system synthesis; nonlinear control systems; variable structure systems; robust control; uncertain systems; control nonlinearities; Lyapunov methods; piezoelectric actuators; observers

Other keywords: fault-tolerant controller; robust control; robust backstepping control theory; tracking performance; hysteretic nonlinearity observer design; hysteretic effect; uncertain systems; Lyapunov theory; sliding mode control theory; H∞ performance; exogenous disturbance; tracking control; PEA modelling; controller design; hysteretic character; piezoelectric actuator

Subjects: Stability in control theory; Control system analysis and synthesis methods; Simulation, modelling and identification; Electric actuators and final control equipment; Multivariable control systems; Nonlinear control systems

References

    1. 1)
      • 9. Gang, T., Xiaoli, M., Yi, L.: ‘Optimal and nonlinear decoupling control of systems with sandwiched backlashq’, Automatica, 2001, 32, (7), pp. 165176.
    2. 2)
      • 4. Weitech, A., Pradeep, K., Cameron, N.R.: ‘Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications’, IEEE/ASME Trans. Mechatronics, 2007, 12, (2), pp. 134142.
    3. 3)
      • 13. Mohammed, I., Faycal, I., Jose, R.: ‘The hysteresis Bouc-wen model, a survey’, Arch. Comput. Methods Eng., 2009, 16, (2), pp. 161188.
    4. 4)
      • 10. Chuntao, L., Yonghong, T.: ‘A hybrid neural network based modeling for hysteresis’. IEEE Int. Symp. On, Mediterrean Conf. on Intelligent Control, Limassol, Cyprus, 2005, pp. 2729.
    5. 5)
      • 7. Mohammad, A.J., Micky, R., Omar, A.: ‘Further results on hysteresis compensation of smart micropositioning systems with the inverse prandtl–ishlinskii compensator’, IEEE Trans. Control Syst. Technol., 2016, 24, (2), pp. 428439.
    6. 6)
      • 23. Petersen, I., Hollot, H.: ‘A Riccati equation approach to the stabilization of uncertain linear systems’, Automatica, 1986, 22, (4), pp. 397441.
    7. 7)
      • 3. Xinkai, C., Chunyi, S., Zhi, L., et al: ‘Design of implementable adaptive control for micro/nano positioning system driven by piezoelectric actuator’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 64716481.
    8. 8)
      • 2. Mojtaba, B., Magdalena, G., Feliks, S., et al: ‘Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm’, Acta Mech., 2015, 226, (10), pp. 34513462.
    9. 9)
      • 6. Jeong Jong, L., Young, K.K., Se Hyun, R., et al: ‘Hysteresis torque analysis of permanent magnet motors using preisach model’, IEEE Trans. Magn., 2012, 48, (2), pp. 935938.
    10. 10)
      • 17. Teerawat, S., Suwat, K., Rudiger, S.: ‘Hysteretic nonlinearity observer design based on Kalman filter for piezo-actuated flexible beams with control applications’, Int. J. Autom. Comput., 2014, 11, (6), pp. 627634.
    11. 11)
      • 1. Kai, Z., Deshi, W., Chengye, Z.: ‘Analysis of the vibration characteristics of the fuze piezoelectric transducer's converter’, J. Ordnance Equip. Eng., 2013, 34, (11), pp. 1719.
    12. 12)
      • 11. Chunyi, S., Yury, S., Jaroslac, S., et al: ‘Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis’, IEEE Trans. Autom. Control, 2000, 45, (12), pp. 24272432.
    13. 13)
      • 8. Royson, D.D., Bineesh, B., Anil, S.: ‘Hysteresis modeling of amplified piezoelectric stack actuator for the control of the microgripper’, Am. Sci. Res. J. Eng. Technol. Sci., 2016, 15, (1), pp. 265281.
    14. 14)
      • 5. Yangmin, L., Qingsong, X.: ‘Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator’, IEEE Trans. Control Syst. Technol., 2010, 18, (4), pp. 798810.
    15. 15)
      • 20. Jing, Z., Changyun, W.: ‘Adaptive feedback control of magnetic suspension system preceded by Bouc-wen hysteresis’. 12th Int. Conf. on Control, Automation, Guangzhou, China, 2012, pp. 12441249.
    16. 16)
      • 12. Ram, V.I., Xiaobo, T., Krishnaprasad, P.: ‘Approximate inversion of the preisach hysteresis operator with application to control of smart actuators’, IEEE Trans. Autom. Control, 2005, 50, (6), pp. 798810.
    17. 17)
      • 22. Yiwen, Q., Jiaming, H.: ‘Observer-based bumpless switching control for switched linear systems with sensor faults’, Trans. Inst. Meas. Control, 2017, 40, (5), pp. 14901498, doi: 10.1177/0142331216685605.
    18. 18)
      • 19. Qingsong, X., Pak-Kin, W.: ‘Hysteresis modeling and compensation of a piezostage using least squares support vector machines’, Mechatronics, 2011, 21, (7), pp. 12391251.
    19. 19)
      • 14. Didace, H., Micky, P., Yann, G.: ‘Bouc-wen modeling and feedforward control of multivariable hysteresis in piezoelectric systems: application to a 3-DoF piezotube scanner’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 17971806.
    20. 20)
      • 18. Chih-Jer, L., Sheng-Ren, Y.: ‘Modeling of a piezo-actuated positioning stage based on a hysteresis observer’, Asian J. Control, 2005, 7, (1), pp. 7380.
    21. 21)
      • 21. Zhenhua, W., Shen, Y.: ‘Actuator fault estimation for a class of nonlinear descriptor systems’, Int. J. Syst. Sci., 2014, 45, (3), pp. 487496.
    22. 22)
      • 16. Sheikh, M., Seyed, R., Kazi, S., et al: ‘Hysteresis-observer based robust tracking control of piezoelectric actuators’. American Control Conf., Baltimore, USA, 2010, pp. 418741692.
    23. 23)
      • 15. Nafea, M., Kazi, S., Mohamed, Z., et al: ‘A hybrid control approach for precise positioning of a piezo-actuated stage’. 2014 14th Int. Conf. on Control, Automation and Systems (ICCAS 2014), Gyeonggi-do, Korea, 2014, pp. 667671.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8967
Loading

Related content

content/journals/10.1049/joe.2018.8967
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading