http://iet.metastore.ingenta.com
1887

access icon openaccess Hysteretic non-linearity observer design and robust control for piezoelectric actuators

  • PDF
    1.1665916442871094MB
  • XML
    164.8974609375Kb
  • HTML
    220.1982421875Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8967/JOE.2018.8967.html;jsessionid=30oljk4q8ho5j.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8967&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Kai, Z., Deshi, W., Chengye, Z.: ‘Analysis of the vibration characteristics of the fuze piezoelectric transducer's converter’, J. Ordnance Equip. Eng., 2013, 34, (11), pp. 1719.
    2. 2)
      • 2. Mojtaba, B., Magdalena, G., Feliks, S., et al: ‘Optimal configuration of piezoelectric sensors and actuators for active vibration control of a plate using a genetic algorithm’, Acta Mech., 2015, 226, (10), pp. 34513462.
    3. 3)
      • 3. Xinkai, C., Chunyi, S., Zhi, L., et al: ‘Design of implementable adaptive control for micro/nano positioning system driven by piezoelectric actuator’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 64716481.
    4. 4)
      • 4. Weitech, A., Pradeep, K., Cameron, N.R.: ‘Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications’, IEEE/ASME Trans. Mechatronics, 2007, 12, (2), pp. 134142.
    5. 5)
      • 5. Yangmin, L., Qingsong, X.: ‘Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator’, IEEE Trans. Control Syst. Technol., 2010, 18, (4), pp. 798810.
    6. 6)
      • 6. Jeong Jong, L., Young, K.K., Se Hyun, R., et al: ‘Hysteresis torque analysis of permanent magnet motors using preisach model’, IEEE Trans. Magn., 2012, 48, (2), pp. 935938.
    7. 7)
      • 7. Mohammad, A.J., Micky, R., Omar, A.: ‘Further results on hysteresis compensation of smart micropositioning systems with the inverse prandtl–ishlinskii compensator’, IEEE Trans. Control Syst. Technol., 2016, 24, (2), pp. 428439.
    8. 8)
      • 8. Royson, D.D., Bineesh, B., Anil, S.: ‘Hysteresis modeling of amplified piezoelectric stack actuator for the control of the microgripper’, Am. Sci. Res. J. Eng. Technol. Sci., 2016, 15, (1), pp. 265281.
    9. 9)
      • 9. Gang, T., Xiaoli, M., Yi, L.: ‘Optimal and nonlinear decoupling control of systems with sandwiched backlashq’, Automatica, 2001, 32, (7), pp. 165176.
    10. 10)
      • 10. Chuntao, L., Yonghong, T.: ‘A hybrid neural network based modeling for hysteresis’. IEEE Int. Symp. On, Mediterrean Conf. on Intelligent Control, Limassol, Cyprus, 2005, pp. 2729.
    11. 11)
      • 11. Chunyi, S., Yury, S., Jaroslac, S., et al: ‘Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis’, IEEE Trans. Autom. Control, 2000, 45, (12), pp. 24272432.
    12. 12)
      • 12. Ram, V.I., Xiaobo, T., Krishnaprasad, P.: ‘Approximate inversion of the preisach hysteresis operator with application to control of smart actuators’, IEEE Trans. Autom. Control, 2005, 50, (6), pp. 798810.
    13. 13)
      • 13. Mohammed, I., Faycal, I., Jose, R.: ‘The hysteresis Bouc-wen model, a survey’, Arch. Comput. Methods Eng., 2009, 16, (2), pp. 161188.
    14. 14)
      • 14. Didace, H., Micky, P., Yann, G.: ‘Bouc-wen modeling and feedforward control of multivariable hysteresis in piezoelectric systems: application to a 3-DoF piezotube scanner’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 17971806.
    15. 15)
      • 15. Nafea, M., Kazi, S., Mohamed, Z., et al: ‘A hybrid control approach for precise positioning of a piezo-actuated stage’. 2014 14th Int. Conf. on Control, Automation and Systems (ICCAS 2014), Gyeonggi-do, Korea, 2014, pp. 667671.
    16. 16)
      • 16. Sheikh, M., Seyed, R., Kazi, S., et al: ‘Hysteresis-observer based robust tracking control of piezoelectric actuators’. American Control Conf., Baltimore, USA, 2010, pp. 418741692.
    17. 17)
      • 17. Teerawat, S., Suwat, K., Rudiger, S.: ‘Hysteretic nonlinearity observer design based on Kalman filter for piezo-actuated flexible beams with control applications’, Int. J. Autom. Comput., 2014, 11, (6), pp. 627634.
    18. 18)
      • 18. Chih-Jer, L., Sheng-Ren, Y.: ‘Modeling of a piezo-actuated positioning stage based on a hysteresis observer’, Asian J. Control, 2005, 7, (1), pp. 7380.
    19. 19)
      • 19. Qingsong, X., Pak-Kin, W.: ‘Hysteresis modeling and compensation of a piezostage using least squares support vector machines’, Mechatronics, 2011, 21, (7), pp. 12391251.
    20. 20)
      • 20. Jing, Z., Changyun, W.: ‘Adaptive feedback control of magnetic suspension system preceded by Bouc-wen hysteresis’. 12th Int. Conf. on Control, Automation, Guangzhou, China, 2012, pp. 12441249.
    21. 21)
      • 21. Zhenhua, W., Shen, Y.: ‘Actuator fault estimation for a class of nonlinear descriptor systems’, Int. J. Syst. Sci., 2014, 45, (3), pp. 487496.
    22. 22)
      • 22. Yiwen, Q., Jiaming, H.: ‘Observer-based bumpless switching control for switched linear systems with sensor faults’, Trans. Inst. Meas. Control, 2017, 40, (5), pp. 14901498, doi: 10.1177/0142331216685605.
    23. 23)
      • 23. Petersen, I., Hollot, H.: ‘A Riccati equation approach to the stabilization of uncertain linear systems’, Automatica, 1986, 22, (4), pp. 397441.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8967
Loading

Related content

content/journals/10.1049/joe.2018.8967
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address