http://iet.metastore.ingenta.com
1887

access icon openaccess Relationship between the engaging force of planetary gear train and the position-correlated modal properties

  • PDF
    3.620393753051758MB
  • HTML
    291.4140625Kb
  • XML
    245.5478515625Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8964/JOE.2018.8964.html;jsessionid=1wc5kxs39on2i.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8964&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Parker, R.G.: ‘A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration’, J. Sound Vib., 2000, 236, (4), pp. 561573.
    2. 2)
      • 2. Ambarisha, V.K., Parker, R.G.: ‘Suppression of planet mode response in planetary gear dynamics through mesh phasing’, J. Vib. Acoust., 2006, 128, (2), pp. 133142.
    3. 3)
      • 3. Kahraman, A.: ‘Natural modes of planetary gear trains’, J. Sound Vib., 1994, 173, pp. 125130.
    4. 4)
      • 4. Kahraman, A.: ‘Free torsional vibration characteristics of compound planetary gear sets’, Mech. Mach. Theory, 2001, 36, (8), pp. 953971.
    5. 5)
      • 5. Lin, J., Parker, R.G.: ‘Analytical characterization of the unique properties of planetary gear free vibration’, J. Vib. Acoust., 1999, 121, (3), pp. 316321.
    6. 6)
      • 6. Kiracofe, D.R., Parker, R.G.: ‘Structured vibration modes of general compound planetary gear systems’, J. Vib. Acoust., 2007, 129, (1), pp. 116.
    7. 7)
      • 7. Guo, Y., Parker, R.G.: ‘Purely rotational model and vibration modes of compound planetary gears’, Mech. Mach. Theory, 2010, 45, (3), pp. 365377.
    8. 8)
      • 8. Eritenel, T., Parker, R.G.: ‘Modal properties of three-dimensional helical planetary gears’, J. Sound Vib., 2009, 325, (1–2), pp. 397420.
    9. 9)
      • 9. Lin, J., Parker, R.G.: ‘Sensitivity of planetary gear natural frequencies and vibration modes to model parameters’, J. Sound Vib., 1999, 228, (1), pp. 109128.
    10. 10)
      • 10. Guo, Y., Parker, R.G.: ‘Sensitivity of general compound planetary gear natural frequencies and vibration modes to model parameters’, J. Vib. Acoust., 2010, 132, (1), pp. 655672.
    11. 11)
      • 11. Wu, X., Parker, R.G.: ‘Modal properties of planetary gears with an elastic continuum ring gear’, J. Appl. Mech., 2008, 75, (3), p. 031014.
    12. 12)
      • 12. Sun, W., Ding, X., Wei, J., et al: ‘An analyzing method of coupled modes in multi-stage planetary gear system’, Int. J. Prec. Eng. Manuf., 2014, 15, (11), pp. 23572366.
    13. 13)
      • 13. Lin, J., Parker, R.G.: ‘Natural frequency veering in planetary gears’, Mech. Struct. Mach., 2001, 29, (4), pp. 411429.
    14. 14)
      • 14. Ericson, T.M., Parker, R.G.: ‘Natural frequency clusters in planetary gear vibration’, J. Vib. Acoust., 2013, 135, (6), p. 061002.
    15. 15)
      • 15. Zhang, L., Wang, Y., Wu, K., et al: ‘Dynamic modeling and vibration characteristics of a two-stage closed-form planetary gear train’, Mech. Mach. Theory, 2016, 97, pp. 1228.
    16. 16)
      • 16. Kim, J.S., Park, N.G., Lee, H.W.: ‘Vibration analysis of a planetary gear system based on the transfer matrix method’, J. Mech. Sci. Technol., 2016, 30, (2), pp. 611621.
    17. 17)
      • 17. Parker, R.G., Lin, J.: ‘Mesh phasing relationships in planetary and epicyclic gears’, J. Mech. Des., 2004, 126, (2), pp. 525534.
    18. 18)
      • 18. Yang, D.C.H., Lin, J.Y.: ‘Hertzian damping, tooth friction and bending elasticity in gear impact dynamics’, J. Mech. Des., 1987, 109, (2), pp. 189196.
    19. 19)
      • 19. Tian, X. H.: ‘Dynamic simulation for system response of gearbox including localized gear faults’. MS thesis, University of Alberta, Edmonton, 2004.
    20. 20)
      • 20. Yang, D.C.H., Sun, Z.S.: ‘A rotary model for spur gear dynamics’, J. Xian Univ. Technol., 1985, 107, (4), pp. 529535.
    21. 21)
      • 21. Muskhelishvili, N.I.: ‘Some basic problems of the mathematical theory of elasticity’ (P. Noordhoff Ltd, Groningen, 1953).
    22. 22)
      • 22. Sainsot, P., Velex, P., Duverger, O.: ‘Contribution of gear body to tooth deflections – a new bidimensional analytical formula’, J. Mech. Des., 2004, 126, (4), pp. 748752.
    23. 23)
      • 23. Ma, H., Li, Z., Feng, M., et al: ‘Time-varying mesh stiffness calculation of spur gears with spalling defect’, Eng. Fail. Anal., 2016, 66, pp. 166176.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8964
Loading

Related content

content/journals/10.1049/joe.2018.8964
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address