http://iet.metastore.ingenta.com
1887

access icon openaccess Fatigue crack fault diagnosis and prognosis based on hidden semi-Markov model

  • PDF
    2.819279670715332MB
  • HTML
    99.3291015625Kb
  • XML
    90.51171875Kb
Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/13/JOE.2018.8960.html;jsessionid=1nui6hplo9gsi.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8960&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Blunt, D.M., Keller, J.A.: ‘Detection of a fatigue crack in a UH-60A planet gear carrier using vibration analysis’, Mech. Syst. Signal Process. ., 2006, 20, (8), pp. 20952111.
    2. 2)
      • 2. Keller, J.A., Grabill, P.: ‘Vibration monitoring of UH-60A main transmission planetary carrier fault’ (American Helicopter Society, Inc, New York, NY, USA, 2003), pp. 12331243.
    3. 3)
      • 3. Wu, B., Saxena, A., Khawaja, T.S., et al: ‘An approach to fault diagnosis of helicopter planetary gears’. Proc. AUTOTESTCON 2004, New York, NY, USA, 2004, pp. 475481.
    4. 4)
      • 4. Abhinav, S., Biqing, W., Vachtsevanos, G.: ‘A methodology for analyzing vibration data from planetary gear systems using complex Morlet wavelets’, 2005, pp. 47304735.
    5. 5)
      • 5. Biqing, W., Abhinav, S., Romano, P., et al: ‘Vibration monitoring for fault diagnosis of helicopter planetary gears’, Elsevier Science & Technology, 2005.
    6. 6)
      • 6. Sparis, P., Vachtsevanos, G.: ‘A helicopter planetary gear plate crack analysis and feature extraction based on ground and aircraft data’, 2005, pp. 646651.
    7. 7)
      • 7. Zi-bing, Z.: ‘U.S.A rotorcraft transmission research program and inspirings’, 2005.
    8. 8)
      • 8. Dong, M., He, D., Banerjee, P., et al: ‘Equipment health diagnosis and prognosis using hidden semi-Markov models’, Int. J. Adv. Manuf. Technol., 2006, 30, (7–8), pp. 738749.
    9. 9)
      • 9. Patrick-Aldaco, R.: ‘A model based framework for fault diagnosis and prognosis of dynamical systems with an application to helicopter transmissions’. Georgia Institute of Technology, Georgia, USA, 2007, p. 280.
    10. 10)
      • 10. Zhang, B., Khawaja, T., Patrick, R., et al: ‘Blind deconvolution denoising for helicopter vibration signals’, IEEE/ASME Trans. Mechatronics, 2008, 13, (5), pp. 558565.
    11. 11)
      • 11. Ogundare, A., Ojolo, S., Mba, D., et al: ‘Review of fault detection techniques for health monitoring of helicopter gearbox’, in Kacprzyk, J. (Ed.): ‘Advanced technologies for sustainable systems’ (Springer, Cairo, Egypt, 2017), pp. 125135.
    12. 12)
      • 12. Fan, L., Wang, S., Wang, X., et al: ‘Nonlinear dynamic modeling of a helicopter planetary gear train for carrier plate crack fault diagnosis’, Chin. J. Aeronaut., 2016, 29, (3), pp. 675687.
    13. 13)
      • 13. Rabiner, L.R.: ‘A tutorial on hidden Markov models and selected applications in speech recognition’, Proc. IEEE, 1989, 77, (2), pp. 257286.
    14. 14)
      • 14. Yu, S.-Z.: ‘Hidden semi-Markov models’, Artif. Intell., 2010, 174, (2), pp. 215243.
    15. 15)
      • 15. Russell, M., Moore, R.: ‘Explicit modelling of state occupancy in hidden Markov models for automatic speech recognition’, 1985, pp. 58.
    16. 16)
      • 16. Yu, S.-Z., Kobayashi, H.: ‘An efficient forward-backward algorithm for an explicit-duration hidden Markov model’, IEEE Signal Process. Lett., 2003, 10, (1), pp. 1114.
    17. 17)
      • 17. Zhe, C.: ‘Theory and method on damage modeling and prognostics for planetary gear set of helicopter transmission system’. Graduate School of National University of Defense Technology, Changsha, Hunan, P.R. China, 2011, p. 163.
    18. 18)
      • 18. Henderson, J.P., Plummer, A., Johnston, N.: ‘An electro-hydrostatic actuator for hybrid active-passive vibration isolation’, Int. J. Hydromechatronics, 2018, 1, (1), pp. 4771.
    19. 19)
      • 19. Shengli, H.: ‘Fault research of Z-9B helicopter’, Helicopter Tech., 2002, (2), pp. 4042.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8960
Loading

Related content

content/journals/10.1049/joe.2018.8960
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address