http://iet.metastore.ingenta.com
1887

access icon openaccess Experimental study on jet flow characteristics of fire water monitor

  • XML
    42.33984375Kb
  • HTML
    46.50390625Kb
  • PDF
    3.4154539108276367MB
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8950/JOE.2018.8950.html;jsessionid=700672m9ak2os.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8950&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Zhou, J., Li, G.R.: ‘Study and simulation for optimization plan of the liquamatic fire water cannon with self-swinging device’, Adv. Mater. Res., 2012, 468–471, (468–471), pp. 944948.
    2. 2)
      • 2. Leu, M.C., Meng, P., Geskin, E.S., et al: ‘Mathematical modeling and experimental verification of stationary water jet cleaning process’, J. Manuf. Sci. Eng., 1998, 120, (3), pp. 571579.
    3. 3)
      • 3. Guha, A., Barron, R.M., Balachandar, R.: ‘Numerical simulation of high-speed turbulent water jets in air’, J. Hydraul. Res., 2010, 48, (1), pp. 119124.
    4. 4)
      • 4. Angelino, M., Boghi, A., Gori, F.: ‘Numerical solution of three-dimensional rectangular submerged jets with the evidence of the undisturbed region of flow’, Numer. Heat Transf., 2016, 70, (8), pp. 815830.
    5. 5)
      • 5. Zhang, S., Tao, X., Lu, J., et al: ‘Design, optimization and CFD simulation of a nozzle for industrial cleaning processes based on high-pressure water jets’, Int. J. Oil Gas Coal Technol., 2015, 7, (1), pp. 128.
    6. 6)
      • 6. Hu, G.L., Chen, W.G., Gao, Z.G.: ‘Flow analysis of spray jet and direct jet nozzle for fire water monitor’, Adv. Mater. Res., 2010, 139–141, pp. 913916.
    7. 7)
      • 7. Hu, G.L., Liang, J.X.: ‘Numerical simulation and experimental analysis of a collapsed portable type fire water monitor’, Chin. Hydraul. Pneum., 2010, 65, (4), pp. 260276.
    8. 8)
      • 8. Hu, G.L., Long, M., Liang, J.X., et al: ‘Analysis of jet characteristics and structural optimization of a liquamatic fire water monitor with self-swinging mechanism’, Int. J. Adv. Manuf. Technol., 2012, 59, (5–8), pp. 805813.
    9. 9)
      • 9. Miyashita, T., Sugawa, O., Wada, Y., et al: ‘Development of two-dimensional simple simulation model and evaluation of discharge ability for water discharge of firefighting’, Bull. Jpn Assoc. Fire Sci. Eng., 2013, 62, pp. 1319.
    10. 10)
      • 10. Miyashita, T., Sugawa, O., Imamura, T., et al: ‘Modeling and analysis of water discharge trajectory with large capacity monitor’, Fire Saf. J., 2014, 63, (63), pp. 18.
    11. 11)
      • 11. Xiang, Q.J., Shi, Z.F., Li, H., et al: ‘Comparative analysis of three types of straightener in long range firefighting water cannon’, J. Drainage Irrigation Mach. Eng., 2015, 33, (3), pp. 233238.
    12. 12)
      • 12. Yuan, D.Q., Shi, R., Cong, X.Q., et al: ‘Performance analysis of guide vane in long-range fire-fighting water cannon’, J. Drainage Irrigation Mach. Eng., 2017, 35, (4), pp. 333339.
    13. 13)
      • 13. Jena, B., Patel, P., Majhi, B., et al: ‘Image denoising techniques for salt and pepper noise: a comparative study’, Int. J. Res. Comput. Appl. Robot., 2013, 1, (8), pp. 2733.
    14. 14)
      • 14. Srivastava, A., Alankrita Raj, A., et al: ‘Combination of wavelet transform and morphological filtering for enhancement of magnetic resonance images’, Commun. Comput. Inf. Sci., 2011, 188, pp. 460474.
    15. 15)
      • 15. Zhang, D.D., Zhao, S.: ‘An improved edge detection algorithm based on Canny operator’, Appl. Mech. Mater., 2015, 347–350, (4), pp. 35413545.
    16. 16)
      • 16. Gong, C., Yang, M.G.: ‘The experimental and numerical study of the stability of ultra-high pressure water jet’, Adv. Mater. Res., 2014, 860–863, pp. 14951498.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8950
Loading

Related content

content/journals/10.1049/joe.2018.8950
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address