http://iet.metastore.ingenta.com
1887

access icon openaccess Unit commitment using improved adjustable robust optimisation for large-scale new energy power stations

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/16/JOE.2018.8926.html;jsessionid=6n6tdf7pga535.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8926&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Wei, C., Xin, A. I., Tao, W. U., et al: ‘Influence of grid-connected photovoltaic system on power network’, Dianli Zidonghua Shebei, 2013, 33, (2), pp. 2632, 39.
    2. 2)
      • 2. Danwen, Y. U., Ming, Y., Zhai, H., et al: ‘An overview of robust optimization used for power system dispatch and decision-making’, Autom. Electr. Power Syst., 2016, 40, (7), pp. 134143.
    3. 3)
      • 3. Shin, S. S., Oh, J. S., Jang, S. H., et al: ‘Active and reactive power control of ESS in distribution system for improvement of power smoothing control’, J. Electr. Eng. Technol., 2017, 12, (3), pp. 10071015.
    4. 4)
      • 4. Jiang, R., Wang, J., Guan, Y.: ‘Robust unit commitment with wind power and pumped storage hydro’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 800810.
    5. 5)
      • 5. Zhao, L., Zeng, B.: ‘Robust unit commitment problem with demand response and wind energy’. IEEE Power and Energy Society General Meeting, Providence, USA, 2010, pp. 18.
    6. 6)
      • 6. Wang, Q, Wang, J, Guan, Y.: ‘Price-based unit commitment with wind power utilization constraints[J]’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 27182726.
    7. 7)
      • 7. Marcovecchio, M. G., Novais, A. Q., Grossmann, I. E.: ‘Deterministic optimization of the thermal unit commitment problem: a branch and cut search’, Comput. Chem. Eng., 2014, 67, (11), pp. 5368.
    8. 8)
      • 8. Pousinho, H. M. I., Mendes, V. M. F., Catalão, J. P. S.: ‘A stochastic programming approach for the development of offering strategies for a wind power producer’, Electr. Power Syst. Res., 2012, 89, (4), pp. 4553.
    9. 9)
      • 9. Dai, H., Zhang, N., Su, W.: ‘A literature review of stochastic programming and unit commitment’, J. Power Energy Eng., 2017, 03, (4), pp. 206214.
    10. 10)
      • 10. Ye, H., Ge, Y., Shahidehpour, M., et al: ‘Uncertainty marginal price, transmission reserve, and day-ahead market clearing with robust unit commitment’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 17821795.
    11. 11)
      • 11. Xiong, P., Jirutitijaroen, P., Singh, C.: ‘A distributionally robust optimization model for unit commitment considering uncertain wind power generation’, IEEE Trans. Power Syst., 2016, 32, (1), pp. 3949.
    12. 12)
      • 12. Peng, X., Jirutitijaroen, P.: ‘An adjustable robust optimization approach for unit commitment under outage contingencies’. IEEE Power and Energy Society General Meeting, San Diego, USA, 2012, pp. 18.
    13. 13)
      • 13. Peng, X., Jirutitijaroen, P.: ‘Two-stage adjustable robust optimisation for unit commitment under uncertainty’, IET Gener. Transm. Distrib., 2013, 8, (3), pp. 573582.
    14. 14)
      • 14. Yu, X., Zhang, X.: ‘Unit commitment using Lagrangian relaxation and particle swarm optimization’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 510522.
    15. 15)
      • 15. Shukla, A., Singh, S. N.: ‘Advanced three-stage pseudo-inspired weight-improved crazy particle swarm optimization for unit commitment problem’, Energy, 2016, 96, pp. 2336.
    16. 16)
      • 16. Ketabi, A., Fini, M. H.: ‘Adaptive underfrequency load shedding using particle swarm optimization algorithm’, J. Appl. Res. Technol., 2017, 15, (1), pp. 5460.
    17. 17)
      • 17. Jiang, R., Wang, J., Zhang, M., et al: ‘Two-stage minimax regret robust unit commitment’, IEEE Trans. Power Syst., 2013, 28, pp. 22712282.
    18. 18)
      • 18. Zhao, C., Wang, J., Watson, J. P., et al: ‘Multi-stage robust unit commitment considering wind and demand response uncertainties’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 27082717.
    19. 19)
      • 19. Lorca, Á., Sun, X. A.: ‘Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind’, IEEE Trans. Power Syst., 2015, 30, (4), pp. 17021713.
    20. 20)
      • 20. Chen, J., Wenchuan, W. U., Zhang, B., et al: ‘A robust interval wind power dispatch method considering the tradeoff between security and economy’, Proc. CSEE, 2014, 34, (7), pp. 10331040.
    21. 21)
      • 21. Peng, X., Peng, C., Rong, Y. U.: ‘Multi-objective robust optimized scheduling of power grid connected with large-scale intermittent power sources’, Power Syst. Technol., 2014, 38, (6), pp. 14791484.
    22. 22)
      • 22. Peng, C., Xie, P., Chen, C.: ‘Adjustable robust optimal dispatch of power system with large-scale photovoltaic power stations’, Proc. CSEE, 2014, 34, (25), pp. 43254332.
    23. 23)
      • 23. Wei, W., Liu, F., Mei, S.: ‘Game theoretical scheduling of modern power systems with large-scale wind power integration’. Power and Energy Society General Meeting, 2012 IEEE, San Diego, CA, 22–26 July 2012, pp. 16.
    24. 24)
      • 24. Hao, Q. P., Hong-Bo, L. I., Liu, Q., et al: ‘Application of LINGO in dynamic economic dispatching of the wind power integrated system’, Electr. Switchgear, 2011, 49, (6), pp. 6973.
    25. 25)
      • 25. Chen, Q. X., Kang, C. Q., Xia, Q.: ‘Operation mechanism and peak-load shaving effects of carbon-capture power plant’, Proc. CSEE, 2010, 30, (7), pp. 2228.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8926
Loading

Related content

content/journals/10.1049/joe.2018.8926
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address