http://iet.metastore.ingenta.com
1887

access icon openaccess Novel MPPT method based on large variance GA-RBF

  • HTML
    55.20703125Kb
  • PDF
    2.6043577194213867MB
  • XML
    43.1005859375Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8887/JOE.2018.8887.html;jsessionid=20kxbnmt8npi.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8887&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Xin, P.: ‘Comprehensive evaluation and application prospect of solar power generation technology’ (North China Electric Power University, Beijing, China, 2015).
    2. 2)
      • 2. National Bureau of energy: ‘Solar energy development planning ‘in 13th five-year’’, Solar, 2016, 12, pp. 514, 24.
    3. 3)
      • 3. Singh, G.K.: ‘Solar power generation by PV (photovoltaic) technology: a review’, Energy, 2013, 53, (5), pp. 113.
    4. 4)
      • 4. Liu, L., Meng, X., Liu, C.: ‘A review of maximum power point tracking methods of PV power system at uniform and partial shading’, Renew. Sustain. Energy Rev., 2016, 53, pp. 15001507.
    5. 5)
      • 5. Chen, L., Yu, X., Quan, H.: ‘Application of improved perturbation and observation method in the photovoltaic power generation based on MPPT’, Power Technol., 2015, 2015, pp. 614616.
    6. 6)
      • 6. Liang, X., Zhang, W.: ‘Research on MPPT based on BP neural network photovoltaic power generation system’, Manuf. Autom., 2012, 2012, pp. 112130.
    7. 7)
      • 7. Lin, H., Zhou, B., Ranyi, , et al: ‘Research on photovoltaic system maximum power point tracking genetic optimization algorithm based on BP neural network’, Electr.Meas. Instrum., 2015, 2015, pp. 3540.
    8. 8)
      • 8. Zhu, Z., Guo, F., Sun, G., et al: ‘Research on photovoltaic MPPT based on RBF-BP neural network’, Comput. Simul., 2015, 2015, pp. 131134.
    9. 9)
      • 9. Wu, Y., Liu, N., Lv, H.: ‘Study on MPPT algorithm base on ant colony optimization’, Pract. Underst. Math., 2017, 47, (5), pp. 120124.
    10. 10)
      • 10. Wu, Y.: ‘The research on three phase single stage photovoltaic grid connected system’ (Shandong University of Science and Technology, Qingdao, China, 2017).
    11. 11)
      • 11. Wang, S., Xue, Y., Jeky, , et al: ‘The design of photovoltaic power generation prediction model based on BP neural network’, Microprocessors, 2016, 2, pp. 8285.
    12. 12)
      • 12. Zengjue, , ‘Application of RBF neural network based on genetic algorithm optimization in MPPT of photovoltaic power generation’ (Hunan University of Technology, Hunan, China, 2015).
    13. 13)
      • 13. Xu, J.: ‘Intelligent control in temperature optimization of beer fermentation system’ (Harbin University of science and technology, Harbin, China, 2016).
    14. 14)
      • 14. Guo, L., Chen, W., Jia, J., et al: ‘Based on particle swarm optimization (PSO) BP neural network photovoltaic cell modeling’, Electr. Energy New Technol., 2011, 30, (2), pp. 8488.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8887
Loading

Related content

content/journals/10.1049/joe.2018.8887
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address