http://iet.metastore.ingenta.com
1887

access icon openaccess Review of the DC voltage coordinated control strategies for multi-terminal VSC-MVDC distribution network

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/16/JOE.2018.8841.html;jsessionid=1pikaf0ablli8.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8841&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Saeedifard, M., Graovac, M., Dias, R.F., et al: ‘DC power systems: challenges and opportunities’. Proc. IEEE PES General Meeting, Providence, USA, July 2010, pp. 17.
    2. 2)
      • 2. Mackay, L., Hailu, T.G., Mouli, G.C., et al: ‘From DC nano and microgrids towards the universal DC distribution system – a plea to think further into the future’. Proc. IEEE Power and Energy Society General Meeting, Denver, USA, July 2015, pp. 15.
    3. 3)
      • 3. Hammerstrom, D.J.: ‘AC versus DC distribution systems: did we get it right?’. Proc. IEEE Power Engineering Society General Meeting, Tampa, USA, June 2007, pp. 15.
    4. 4)
      • 4. tnei: ‘MVDC technology study – market opportunities and economic Impact’ (tnei, Glasgow, 2015), pp. 1126.
    5. 5)
      • 5. Kusic, G.L., Reed, G.F., Svensson, J., et al: ‘A case for medium voltage DC for distribution circuit applications’. Proc. IEEE/PES Power Systems Conf. and Exposition, Phoenix, USA, May 2011, pp. 17.
    6. 6)
      • 6. Bathurst, G., Hwang, G., Tejwani, L.: ‘MVDC – the new technology for distribution networks’. Proc. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, February 2015, pp. 15.
    7. 7)
      • 7. Reed, G.F., Grainger, B.M., Sparacino, A.R., et al: ‘Medium voltage DC technology developments, applications and trends’. Proc. Cigre US National Committee, Kanas City, USA, July 2012, pp. 17.
    8. 8)
      • 8. Stieneker, M., De Doncker, R.W.: ‘Medium-voltage DC distribution grids in urban areas’. Proc. IEEE 7th Int. Symp. on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, Canada, June 2016, pp. 17.
    9. 9)
      • 9. Yang, W., Zhang, A., Song, S., et al: ‘Comparative study on radial topology 10 kV AC and ±10 kV DC power distribution network’. Proc. Chinese Control and Decision Conf. (CCDC), Yinchuan, China, May 2016, pp. 62166221.
    10. 10)
      • 10. Taylor, E., Korytowski, M., Reed, G.: ‘Voltage transient propagation in AC and DC datacenter distribution architectures’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, USA, September 2012, pp. 19982004.
    11. 11)
      • 11. Nilsson, D., Sannino, A.: ‘Efficiency analysis of low- and medium-voltage DC distribution systems’. Proc. IEEE Power Engineering Society General Meeting, Denver, USA, June 2004, pp. 23152321.
    12. 12)
      • 12. Baran, M.E., Mahajan, N.R.: ‘DC distribution for industrial systems: opportunities and challenges’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 15961601.
    13. 13)
      • 13. Sparacino, A.R.: ‘Design and simulation of a DC electric vehicle charging station interconnected with an MVDC infrastructure’. MSc thesis, University of Pittsburgh, 2012.
    14. 14)
      • 14. Gómez-expósito, A., Mauricio, J.M., Maza-ortega, J.M.: ‘VSC-based MVDC railway electrification system’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 422431.
    15. 15)
      • 15. Hinz, A., Stieneker, M., De Doncker, R.W.: ‘Impact and opportunities of medium-voltage DC grids in urban railway systems’. Proc. 18th European Conf. on Power Electronics and Applications, Karlsruhe, Germany, September 2016, pp. 110.
    16. 16)
      • 16. Korytowski, J.M: ‘Comparative analysis of medium voltage DC and AC network infrastructure models’. MSc thesis, University of Pittsburgh, 2011.
    17. 17)
      • 17. Arrillaga, J., Liu, Y.H., Watson, N.R.: ‘Flexible power transmission’ (John Wiley & Sons Ltd, West Sussex, 2007, 2nd edn.).
    18. 18)
      • 18. ABB: ‘HVDC light; it's time to connect’ (ABB, Ludvika, 2012), pp. 172.
    19. 19)
      • 19. Alstom Grid: ‘HVDC for beginners and beyond’ (Alstom, London, 2010), pp. 192.
    20. 20)
      • 20. Joos, G., Ooi, B.T., McGillis, D., et al: ‘The potential of distributed generation to provide ancillary services’. Proc. Power Engineering Society Summer Meeting, Seatle, USA, July 2000, pp. 17621767.
    21. 21)
      • 21. Simiyu, P., Xin, A., Bitew, G.T.: ‘Modelling and analysis of a VSC-MVDC in the distribution network’. Proc. Int. Conf. on Electrical Engineering (ICEE), Weihai, China, July 2017, pp. 435443.
    22. 22)
      • 22. Stieneker, M., Mortimer, B.J., Averous, N.R., et al: ‘Optimum design of medium-voltage DC collector grids depending on the offshore-wind-park power’. Proc. IEEE Symp. on Power Electronics and Machines for Wind and Water Applications, Milwaukee, USA, July 2014, pp. 18.
    23. 23)
      • 23. Chaudhary, S.K., Teodorescu, R., Rodriguez, P.: ‘Wind farm grid integration using VSC based HVDC transmission – an overview’. Proc. IEEE Energy 2030 Conf., Atlanta, USA, November 2008, pp. 17.
    24. 24)
      • 24. Chen, Z.: ‘Issues of connecting wind farms into power systems’. Proc. IEEE/PES Transmission & Distribution Conf. & Exposition: Asia and Pacific, Dalian, China, August 2005, pp. 16.
    25. 25)
      • 25. Nnachi, A.F., Munda, J.L., Nicolae, D.V., et al: ‘VSC HVDC transmission corridor: an option for PV power injection and AC network stability support’. Proc. IEEE Int. Conf. on Industrial Technology (ICIT), Cape Town, South Africa, February 2013, pp. 17871792.
    26. 26)
      • 26. Sparacino, A.R., Grainger, B.M., Kerestes, R.J., et al: ‘Design and simulation of a DC electric vehicle charging station connected to a MVDC infrastructure’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, USA, September 2012, pp. 11681175.
    27. 27)
      • 27. Vazquez, S., Lukic, S.M., Galvan, E., et al: ‘Energy storage systems for transport and grid applications’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 38813895.
    28. 28)
      • 28. Yang, M., Xie, D., Zhu, H., et al: ‘Architectures and control for multi-terminal DC (MTDC) distribution network – a review’. Proc. 11th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, February 2015, pp. 17.
    29. 29)
      • 29. Korompili, A., Sadu, A., Ponci, F., et al: ‘Flexible electric networks of the future; project on control and automation in MVDC grids’. Proc. Int. ETG Congress, Bonn, Germany, 2015, pp. 18.
    30. 30)
      • 30. Huang, Z., Ma, J., Zeng, J., et al: ‘Research status and prospect of control and protection technology for DC distribution network’. Proc. China Int. Conf. on Electricity Distribution (CICED), Shenzhen, China, September 2014, pp. 14881493.
    31. 31)
      • 31. Chaudhuri, N.R., Chaudhuri, B., Majumder, R., et al: ‘Multi-terminal direct-current grids; modeling, analysis, and control’ (Wiley, New Jersey, 2014).
    32. 32)
      • 32. Vrana, T.K., Beerten, J., Belmans, R., et al: ‘A classification of DC node voltage control methods for HVDC grids’, Electr. Power Syst. Res., 2013, 103, pp. 137144.
    33. 33)
      • 33. CIGRE: ‘HVDC grid feasibility study working group B4.52’ (Cigre, Paris, 2013), pp. 1201.
    34. 34)
      • 34. Binkai, J., Zhixin, W.: ‘The key technologies of VSC-MTDC and its application in China’, Renew. Sustain. Energy Rev., 2016, 62, pp. 297304.
    35. 35)
      • 35. Haileselassie, T.M., Uhlen, K.: ‘Impact of DC line voltage drops on power flow of MTDC using droop control’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14411449.
    36. 36)
      • 36. Pinto, R.T., Bauer, P., Rodrigues, S., et al: ‘A novel distributed direct voltage control strategy for grid integration of offshore wind energy systems through MTDC network’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24292441.
    37. 37)
      • 37. Pinto, R.T.: ‘Multi-terminal DC networks; system integration, dynamics and control’. PhD thesis, Delft University of Technology, 2014.
    38. 38)
      • 38. Haileselassie, T.M., Uhlen, K.: ‘Precise control of power flow in multiterminal VSC-HVDCs using DC voltage droop control’. Proc. Power and Energy Society General Meeting, San Diego, USA, July, 2012, pp. 19.
    39. 39)
      • 39. Haileselassie, T.M.: ‘Control, dynamics and operation of multi-terminal VSC-HVDC transmission systems’. PhD thesis, Norwegian University of Science and Technology, 2012.
    40. 40)
      • 40. Rao, H.: ‘Architecture of nan'ao multi-terminal VSC-HVDC and its multi-functional control’, CSEE J. Power Energy Syst., 2015, l, (1), pp. 918.
    41. 41)
      • 41. Mura, F., De Doncker, R.W.: ‘Design aspects of a medium-voltage direct current (MVDC) grid for a university campus’. Proc. 8th Int. Conf. on Power Electronics – ECCE Asia, Jeju, South Korea, May 2011, pp. 23592366.
    42. 42)
      • 42. Hongbo, J., Ekstrom, A.: ‘Multiterminal HVDC systems in urban areas of large cities’, IEEE Trans. Power Deliv., 1998, 13, (4), pp. 12781284.
    43. 43)
      • 43. Ekanayake, J.B.: ‘Multi-terminal DC converters for connecting induction generator based distribution generation’. Proc. Int. Conf. on Industrial and Information Systems (ICIIS), Ceylon, Sri Lanka, December 2009, pp. 466471.
    44. 44)
      • 44. Lu, W., Ooi, B.T.: ‘Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC’, IEEE Trans. Power Deliv., 2003, 18, (1), pp. 201206.
    45. 45)
      • 45. Liang, J., Jing, T., Gomis-bellmunt, O., et al: ‘Operation and control of multiterminal HVDC transmission for offshore wind farms’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 25962604.
    46. 46)
      • 46. Jovcic, D.: ‘Interconnecting offshore wind farms using multiterminal VSC-based HVDC’. Proc. IEEE Power Engineering Society General Meeting, Motreal, Canada, June 2006, p. 7.
    47. 47)
      • 47. Tokiwa, Y., Ichikawa, F., Suzuki, K., et al: ‘Novel control strategies for HVDC system with self-contained converter’, Electr. Eng. Japan, 1993, 113, (5), pp. 113.
    48. 48)
      • 48. Nakajima, T., Irokawa, S.: ‘A control system for HVDC transmission by voltage sourced converters’. Proc. IEEE Power Engineering Society Summer Meeting, Edmonton, Canada, 1999, pp. 11131119.
    49. 49)
      • 49. Nakajima, T.: ‘Operating experiences of STATCOMs and a three-terminal HVDC system using voltage sourced converters in Japan’. Proc. IEEE/PES Transmission and Distribution Conf. and Exhibition, Yokohama, Japan, October 2002, pp. 13871392.
    50. 50)
      • 50. Sakamoto, K., Yajima, M., Ishikawa, T., et al: ‘Development of a control system for a high-performance self-commutated AC-DC converter’, IEEE Trans. Power Deliv., 1998, 13, (1), pp. 225232.
    51. 51)
      • 51. Pinto, R.T., Rodrigues, S.F., Bauer, P., et al: ‘Comparison of direct voltage control methods of multi-terminal DC (MTDC) networks through modular dynamic models’. Proc. 14th European Conf. on Power Electronics and Applications, Birmingham, UK, August-September 2011, pp. 110.
    52. 52)
      • 52. Johnson, B.K., Lasseter, R.H., Alvarado, F.L., et al: ‘Expandable multiterminal DC systems based on voltage droop’, IEEE Trans. Power Deliv., 1993, 8, (4), pp. 19261932.
    53. 53)
      • 53. Vasquez, J.C., Guerrero, J.M., Luna, A., et al: ‘Adaptive droop control applied to voltage-source inverters operating in grid-connected and islanded modes’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 40884096.
    54. 54)
      • 54. Xu, L., Yao, L.: ‘DC voltage control and power dispatch of a multi-terminal HVDC system for integrating large offshore wind farms’, IET Renew. Power Gener., 2011, 5, (3), pp. 223233.
    55. 55)
      • 55. Gomis-Bellmunt, O., Egea-Alvarez, A., Junyent-Ferre, A., et al: ‘Multiterminal HVDC-VSC for offshore wind power integration’. Proc. IEEE Power and Energy Society General Meeting, Detroit, USA, July 2011, pp. 16.
    56. 56)
      • 56. Chaudhuri, N.R., Chaudhuri, B.: ‘Adaptive droop control for effective power sharing in multi-terminal DC (MTDC) grids’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 2129.
    57. 57)
      • 57. Rouzbehi, K., Miranian, A., Candela, J.I., et al: ‘A generalized voltage droop strategy for control of multi-terminal DC grids’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 607618.
    58. 58)
      • 58. Wang, W., Barnes, M., Marjanovic, O.: ‘Droop control modelling and analysis of multi-terminal HVDC for offshore wind farms’. Proc. 10th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, December 2012, pp. 16.
    59. 59)
      • 59. Zhao, X., Li, K.: ‘Droop setting design for multi-terminal HVDC grids considering voltage deviation impacts’, Electr. Power Syst. Res., 2015, 123, pp. 6775.
    60. 60)
      • 60. Beerten, J., Belmans, R.: ‘Analysis of power sharing and voltage deviations in droop controlled DC grids’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 45884597.
    61. 61)
      • 61. Beerten, J., Cole, S., Belmans, R.: ‘Modelling of multi-terminal VSC HVDC systems with distributed DC voltage control’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 3442.
    62. 62)
      • 62. Beerten, J., Van Hertem, D., Belmans, R.: ‘VSC MTDC systems with a distributed DC voltage control – a power flow approach’. Proc. IEEE Trondheim PowerTech, Trondheim, Norway, June 2011, pp. 16.
    63. 63)
      • 63. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the Complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    64. 64)
      • 64. Xu, L., Yao, L., Bazargan, M., et al: ‘Control and operation of multi-terminal DC systems for integrating large offshore wind farms’. Proc. 7th Int. Workshop on Large-scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms, Madrid, Spain, June 2008, pp. 339344.
    65. 65)
      • 65. Xu, L., Yao, L., Bazargan, M.: ‘DC grid management of a multi-terminal HVDC transmission system for large offshore wind farms’. Proc. Int. Conf. on Sustainable Power Generation and Supply, Nanjing, China, April 2009, pp. 17.
    66. 66)
      • 66. Yan, W., Li, K., Wang, Z., et al: ‘Priority control strategy of VSC-MTDC system for integrating wind power’, J. Electr. Comput. Eng., 2015, 2015, pp. 110.
    67. 67)
      • 67. Chen, D., Xu, L.: ‘Autonomous DC voltage control of a DC microgrid with multiple slack terminals’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18971905.
    68. 68)
      • 68. Xiao, J., Wang, P., Setyawan, L., et al: ‘Multi-level energy management system for real-time scheduling of DC microgrids with multiple slack terminals’, IEEE Trans. Energy Convers., 2016, 31, (1), pp. 392400.
    69. 69)
      • 69. Xiao, J., Peng, W., Setyawan, L.: ‘Implementation of multiple-slack-terminal DC microgrids for smooth transitions between grid-tied and islanded states’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 273281.
    70. 70)
      • 70. Dierckxsens, C., Srivastava, K., Reza, M., et al: ‘A distributed DC voltage control method for VSC MTDC systems’, Electr. Power Syst. Res., 2012, 82, (1), pp. 5458.
    71. 71)
      • 71. Li, H., Liu, C., Li, G., et al: ‘An enhanced DC voltage droop-control for the VSC-HVDC grid’, IEEE Trans. Power Syst., 2017, 32, (2), pp. 15201527.
    72. 72)
      • 72. Vrana, T.K., Zeni, L., Fosso, O.B.: ‘Active power control with undead-band voltage & frequency droop for HVDC converters in large meshed DC grids’. Proc. EWEA Conf., Copenhagen, Denmark, August 2012, pp. 18.
    73. 73)
      • 73. Vrana, T.K., Zeni, L., Fosso, O.B.: ‘Active power control with undead-band voltage & frequency droop applied to a meshed DC grid test system’. Proc. IEEE Int. Energy Conf. and Exhibition (ENERGYCON), Florence, Italy, September 2012, pp. 612616.
    74. 74)
      • 74. Vrana, T.K., Zeni, L., Fosso, O.B.: ‘Dynamic active power control with improved undead-band droop for HVDC grids’. Proc. 10th IET Int. Conf. on AC and DC Power Transmission, Birmingham, UK, December 2012, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8841
Loading

Related content

content/journals/10.1049/joe.2018.8841
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address