http://iet.metastore.ingenta.com
1887

access icon openaccess A novel high-conversion-ratio bidirectional three-phase DC–DC converter

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/16/JOE.2018.8782.html;jsessionid=psr2i5kusf2o.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8782&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Ardi, H., Ajami, A., Sabahi, M.: ‘A novel high step-up DC–DC converter with continuous input current integrating coupled inductor for renewable energy applications’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 13061315.
    2. 2)
      • 2. Kwon, M., Oh, S., Choi, S.: ‘High gain soft-switching bidirectional DC–DC converter for eco-friendly vehicles’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 16591666.
    3. 3)
      • 3. Perdigao, M.S., Trovao, J.P.F., Alonso, J.M., et al: ‘Large-Signal characterization of power inductors in EV bidirectional DC–DC converters focused on core size optimization’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 30423051.
    4. 4)
      • 4. Hintz, A., Prasanna, U.R., Rajashekara, K.: ‘Novel modular multiple-input bidirectional DC–DC power converter (MIPC) for HEV/FCV application’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 31633172.
    5. 5)
      • 5. Wang, Y.F., Xue, L.K., Wang, C.S., et al: ‘Interleaved high-conversion-ratio bidirectional DC–DC converter for distributed energy-storage systems–circuit generation, analysis, and design’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 55475561.
    6. 6)
      • 6. Hu, X., Wang, J., Li, L., et al: ‘A three-winding coupled-inductor DC–DC converter topology with high voltage gain and reduced switch stress’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 14531462.
    7. 7)
      • 7. Ardi, H., Ajami, A., Kardan, F., et al: ‘Analysis and implementation of a Non-isolated bidirectional DC–DC converter with high voltage gain’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 48784888.
    8. 8)
      • 8. Lakshmi, M., Hemamalini, S.: ‘Nonisolated high gain DC–DC converter for DC microgrids’, IEEE Trans. Ind.Electron., 2018, 65, (2), pp. 12051212.
    9. 9)
      • 9. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., et al: ‘Step-Up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 91439178.
    10. 10)
      • 10. Diaz-Saldierna, L.H., Morales-Saldaña, J.A., Leyva-Ramos, J., et al: ‘Switching regulator using a quadratic boost converter for wide DC conversion ratios’, IET Power Electron., 2009, 2, (5), pp. 605613.
    11. 11)
      • 11. Qian, W., Cao, D., Cintron-Rivera, J.G., et al: ‘A switched-capacitor DC–DC converter with high voltage gain and reduced component rating and count’, IEEE Trans. Ind. Appl., 2012, 48, (4), pp. 13971406.
    12. 12)
      • 12. Middlebrook, R.D.: ‘A continuous model for the tapped-inductor boost converter’. 1975 IEEE Power Electronics Specialists Conf., Culver City, California, USA, June 1975, pp. 6379.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8782
Loading

Related content

content/journals/10.1049/joe.2018.8782
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address