Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Research on current-mode damping impedance interface model based on adaptive impedance matching

With the development and progress of new energy electricity generation technology, a detailed study and test is required on new energy power generation equipment and micro-network system. As of the advantage of both numerical simulation and physical simulation, power connection type digital physical mixed simulation system could accomplish such research and tests. The simulation interface is the key to realise hybrid simulation. This paper proposes a current-mode damping impedance interface model based on adaptive impedance matching. The model is analysed from the interface stability, the accuracy and the dynamic response ability according to the structure of the interface model. Both theoretical analysis and simulation results show that current-mode damping impedance interface model based on adaptive impedance has high stability and accuracy, and also good dynamic response capability.

References

    1. 1)
      • 10. Ayasun, S, Fischl, R, Vallieu, S, et al: ‘Modeling and stability analysis of a simulation–stimulation interface for hardware-in-the-loop applications[J]’, Simul. Modell. Pract. Theor., 2007, 15, (6), pp. 734746.
    2. 2)
      • 2. Wu, X, Lentijo, S, Monti, A.: ‘A novel interface for power-hardware-in-the-loop simulation’. IEEE Workshop on Computers in Power Electronics, Proc., Urbana, USA, 2004, pp. 178182.
    3. 3)
      • 16. Yuzhou, HU, Zhang, P, Chen, F, et al: ‘Power hardware-in-the-loop simulation system part one characteristics of interface algorithms[J]’, Autom. Electr. Power Syst., 2013, 37, (7), pp. 3641.
    4. 4)
      • 8. Steurer, M, Edrington C, S, Sloderbeck, M, et al: ‘A megawatt-scale power hardware-in-the-loop simulation setup for motor drives[J]’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 12541260.
    5. 5)
      • 18. Ye, J, Min, Y, Min, R, et al: ‘Hardware-in-the-loop simulation technology based on timing analysis part two convergence and accuracy[J]’, Autom. Electr. Power Syst., 2012, 36, (14), pp. 1722.
    6. 6)
      • 5. Steurer, M, Woodruff, S, Baldwin, T, et al: ‘Hardware-in-the-loop investigation of rotor heating in a 5 MW HTS propulsion motor[J]’, IEEE Trans. Appl. Supercond., 2007, 17, (2), pp. 15951598.
    7. 7)
      • 7. Ren, W, Steurer, M, Qi, L.: ‘Evaluating dynamic performance of modern electric drives via power-hardware-in-the-loop simulation’. IEEE Int. Symp. on Industrial Electronics, Cambridge, UK, 2008, pp. 22012206.
    8. 8)
      • 3. Kotsampopoulos, P, Kapetanaki, A, Messinis, G, et al: ‘A power-hardware-in-the-loop facility for microgrids’, Int. J. Distrib. Energy Resour., 2013, 9, (1), pp. 89104.
    9. 9)
      • 4. Steurer, M, Bogdan, F, Ren, W, et al: ‘Controller and power hardware-In-loop methods for accelerating renewable energy integration’. 2007 IEE Power Engineering Society General Meeting, Tampa, USA, June 2007.
    10. 10)
      • 15. Lentijo, S, D'Arco S, Monti A: ‘Comparing the dynamic performances of power hardware-in-the-loop interfaces[J]’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 11951207.
    11. 11)
      • 11. Lei, C, Yong, M, Jun, YE, et al: ‘Modeling and theoretical analysis of hardware-in-the-loop simulation part one structure and model[J]’, Autom. Electr. Power Syst., 2009, 33, (23), pp. 913.
    12. 12)
      • 19. Jun, YE, Yong, M, Rui, M, et al: ‘Hardware-in-the-loop simulation technology based on timing analysis part three stability analysis[J]’, Autom. Electr. Power Syst., 2012, 36, (15), pp. 1418.
    13. 13)
      • 6. Ren, W, Steurer, M, Woodruff, S.: ‘Applying controller and power hardware-in-the-loop simulation in designing and prototyping apparatuses for future all electric ship’. IEEE Electric Ship Technologies Symp. (ESTS '07), Arlington, USA, 2007, pp. 443448.
    14. 14)
      • 1. Ren, W, Sloderbeck, M, Steurer, M, et al: ‘Interfacing issues in real-time digital simulators[J]’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 12211230.
    15. 15)
      • 17. Ye, J, Min, Y, Min, R, et al: ‘Hardware-in-the-loop simulation technology based on timing analysis part one timing analysis and discrete dynamic model[J]’, Autom. Electr. Power Syst., 2012, 36, (13), pp. 2025.
    16. 16)
      • 13. Bacic, M.: ‘On hardware-in-the-loop simulation[C]’. Proc. of the 44th IEEE Conf. on Decision and Control, and 2005 European Control Conf., Seville, Spain, December 12–15, 2005, pp. 31943198.
    17. 17)
      • 12. Lei, C, Yong, M, Jun, YE, et al: ‘Modeling and theoretical analysis of hardware-in-the-loop simulation part two analysis of interface, stability and phase shift[J]’, Autom. Electr. Power Syst., 2009, 33, (24), pp. 2629.
    18. 18)
      • 14. Bacic, M.: ‘On hardware-in-the-loop simulation[C]’. Proc. 44th IEEE Conf. on Decision and Control, Seville, Spain, 2005, pp. 31943198.
    19. 19)
      • 9. Ren, W, Steurer, M, Baldwin, TL.: ‘Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms[J]’, IEEE Trans. Ind. Appl., 2007, 44, (4), pp. 12861294.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8756
Loading

Related content

content/journals/10.1049/joe.2018.8756
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address