Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Stabilisation strategy based on feedback linearisation for DC microgrid with multi-converter

Power electronic converters have been widely used in power system and the stability issues of DC microgrid with converters will be discussed in this study. Firstly, an equivalent circuit and the corresponding state space model for DC microgrid with DC–DC converters were established. The model shows that the DC microgrid systems with DC–DC bidirectional converter in boost or buck mode is a non-linear system, and the tightly regulated point-of-load converters may destabilise the system because it introduces negative incremental resistance to DC microgrid. Then the method of exact feedback linearisation, which transforms the non-linear system into the linear system by coordinate transformation, was applied to stabilise DC microgrid system, and the stabilisation strategy of non-linear system was determined by designing the feedback coefficient of the linearised system. Finally, the feasibility and effectiveness of the stabilisation strategy for DC microgrid with DC–DC bidirectional converter have been verified by the results of simulation with MATLAB.

References

    1. 1)
      • 7. Grigore, V., Hatonen, J., Kyyra, J., et al: ‘Dynamics of a buck converter with a constant power load’. Proc. IEEE 29th Power Electronics Specialists Conf., Fukuoka, Japan, May 1998, pp. 7278.
    2. 2)
      • 16. Amir, M., Geoffrey, A.W., Ali, E.: ‘Loop-cancellation technique: a novel nonlinear feedback to overcome the destabilizing effect of constant-power loads’, IEEE Trans. Veh. Technol., 2010, 59, (2), pp. 822834.
    3. 3)
      • 18. Rivetta, C.H., Emadi, A., Williamson, G.A., et al: ‘Analysis and control of a buck DC-DC converter operating with constant power load in sea and undersea vehicles’, IEEE Trans. Ind. Appl., 2006, 42, (2), pp. 559572.
    4. 4)
      • 12. Cespedes, M., Xing, L., Sun, J.: ‘Constant-load power system stabilization by passive damping’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 18321836.
    5. 5)
      • 21. Emadi, A., Ehsani, M.: ‘Negative impedance stabilizing controls for PWM DC/DC converters using feedback linearization techniques’. 35th Intersociety Energy Conversion Engineering Conf., Las Vegas, 2000, pp. 613620.
    6. 6)
      • 6. Emadi, A., Khaligh, A., Rivetta, C.H., et al: ‘Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives’, IEEE Trans. Veh. Technol., 2006, 55, (4), pp. 11121125.
    7. 7)
      • 15. Pierre, M., Didier, M., Serge, P.: ‘Large-signal stabilization of a dc-link supplying a constant power load using a virtual capacitor: impact on the domain of attraction’, IEEE Trans. Ind. Appl., 2012, 48, (3), pp. 878887.
    8. 8)
      • 20. Tahim, A.P.N., Pagano, D.J., Lenz, E., et al: ‘Modeling and stability analysis of islanded DC microgrid under droop control’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 45974607.
    9. 9)
      • 10. Liu, X., Fournier, N., Forsyth, A.J.: ‘Negative input-resistance compensator for a constant power load’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 31883196.
    10. 10)
      • 4. Kwasinski, A., Krein, P.: ‘Optimal configuration analysis of a microgrid-based telecom power system’. Rec. INTELEC, 2006, pp. 602609.
    11. 11)
      • 9. Middlebrook, R.D.: ‘Input filter considerations in design and applications of switching regulators’. Proc. IEEE Industry Applications Society Annual Meeting, 1976, pp. 366382.
    12. 12)
      • 17. Santi, E., Li, D., Monti, A., et al: ‘A geometric approach to large-signal stability of switching converters under sliding mode control and synergetic control’. Proc. IEEE Power Electronics Specialists Conf., Recife, Brazil, June 2005, pp. 13891395.
    13. 13)
      • 3. Marnay, C., Firestone, R.: ‘Microgrids: an emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality’. Presented at the European Council Energy Eddicient Economy, La Colle sur Loup, France, June 2007.
    14. 14)
      • 19. Kondratiec, I., Santi, E., Dougal, R., et al: ‘Synergetic control for DC-DC buck converters with constant power load’. Proc. IEEE 35th Power Electronics Specialists Conf., Aschen, Germany, June 2004, pp. 37583764.
    15. 15)
      • 2. Amr, A., Radwan, I.: ‘Linear active stabilization of converter-dominated DC microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 203216.
    16. 16)
      • 13. Tomislav, D., Xiaonan, L., Juan, C., et al: ‘DC microgrids-part I: a review of control strategies and stabilization techniques’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 48764891.
    17. 17)
      • 11. Cespedes, M., Lei, X., Jian, S.: ‘Constant-power load system stabilization by passive damping’, IEEE Trans. Power Electron., 2011, 26, (7), pp. 18321836.
    18. 18)
      • 8. Rahimi, A., Emadi, A.: ‘An analytical investigation of DC/DC power electronic converters with constant power loads in vehicular power systems’, IEEE Trans. Veh. Technol., 2009, 58, (6), pp. 26892702.
    19. 19)
      • 1. Alexis, K., Chimaobi, N.: ‘Dynamic behaviour and stabilization of DC microgrids with instantaneous constant-power loads’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 822834.
    20. 20)
      • 14. Rahimi, A., Emadi, A.: ‘Active daming in DC/DC power electronic converters: a novel method to overcome the problems of constant power loads’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 14281439.
    21. 21)
      • 5. Hirose, K., Takeda, T., Muroyama, S.: ‘Study on field demonstration of multiple power quality levels system in Sendai’. Rec. INTELEC, 2006, pp. 256261.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8727
Loading

Related content

content/journals/10.1049/joe.2018.8727
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address