http://iet.metastore.ingenta.com
1887

access icon openaccess Day-ahead optimal energy dispatch schedule for integrated energy system based on AC/DC interconnected infrastructure

  • PDF
    1.9279413223266602MB
  • HTML
    64.2216796875Kb
  • XML
    61.9140625Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8709/JOE.2018.8709.html;jsessionid=ed41h61hm4cd9.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8709&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Piperagkas, G.S., Anastasiadis, A.G., Hatziargyriou, N.D.: ‘Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units’, Electr. Power Syst. Res., 2011, 81, (1), pp. 209218.
    2. 2)
      • 2. Rong, A., Lahdelma, R.: ‘An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system’, Eur. J. Oper. Res., 2017, 258, (3), pp. 11061117.
    3. 3)
      • 3. Basu, A.K., Bhattacharya, A., Chowdhury, S., et al: ‘Planned scheduling for economic power sharing in a CHP-based micro-grid’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 3038.
    4. 4)
      • 4. Karami, H., Sanjari, M.J., Hosseinian, S.H., et al: ‘An optimal dispatch algorithm for managing residential distributed energy resources’, IEEE Trans. Smart Grid, 2014, 5, (5), pp. 23602367.
    5. 5)
      • 5. Mago, P.J., Fumo, N., Chamra, L.M.: ‘Performance analysis of CCHP and CHP systems operating following the thermal and electric load’, Int. J. Energy Res., 2009, 33, (9), pp. 852864.
    6. 6)
      • 6. Zidan, A., Gabbar, H.A., Eldessouky, A.: ‘Optimal planning of combined heat and power systems within microgrids’, Energy, 2015, 93, pp. 235244.
    7. 7)
      • 7. Xu, Z., Guan, X., Jia, Q., et al: ‘Performance analysis and comparison on energy storage devices for smart building energy management’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21362147.
    8. 8)
      • 8. Cui, N., Wang, B., Gao, J., et al: ‘Study and application on a dynamic model for the large capacity heat recovery steam generator’, Proc. Chin. Soc. Electr. Eng., 2006, 26, (19), pp. 103109.
    9. 9)
      • 9. Zeng, A., Xu, Q., Ding, M., et al: ‘A classification control strategy for energy storage system in microgrid’, IEEJ Trans. Electr. Electron. Eng., 2015, 10, pp. 396403.
    10. 10)
      • 10. Zeng, A., Qing-shan, X., Mao-sheng, D., et al: ‘Effect of wind- storage complementary microgrid on reliability of power distribution network’, J. South China Univ. Technol. (Nat. Sci. Ed.), 2014, 42, pp. 2633.
    11. 11)
      • 11. Qingshan, X., Aidong, Z., Kai, W., et al: ‘Day-ahead optimized economic dispatching for combined cooling, heating and power in micro energy-grid based on hessian interior point method’, Power Syst. Technol., 2016, 40, (6), pp. 16571665.
    12. 12)
      • 12. Marnay, C., Venkataramanan, G., Stadler, M., et al: ‘Optimal technology selection and operation of commercial-building microgrids’, IEEE Trans. Power Syst., 2008, 23, pp. 975982.
    13. 13)
      • 13. Terlaky, T.: ‘Interior point methods of mathematical programming’ (Springer Science & Business Media, Norwell, MA, USA, 2013).
    14. 14)
      • 14. Kučera, R., Machalová, J., Netuka, H., et al: ‘An interior-point algorithm for the minimization arising from 3D contact problems with friction’, Optim. Methods Softw., 2013, 28, pp. 11951217.
    15. 15)
      • 15. Waltz, R. A., Morales, J. L., Nocedal, J., et al: ‘An interior algorithm for nonlinear optimization that combines line search and trust region steps’, Math. Program., 2006, 107, pp. 391408.
    16. 16)
      • 16. Zeng, A., Xu, Q., Wang, K., et al: ‘A Day-ahead optimal economic dispatch schedule for multi energy interconnected region’, Energy Proc., 2016, 100, pp. 396400.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8709
Loading

Related content

content/journals/10.1049/joe.2018.8709
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address