http://iet.metastore.ingenta.com
1887

access icon openaccess Impact of variable DC reactors in voltage-source converter based multi-terminal high-voltage DC transmission systems

  • PDF
    1.7021007537841797MB
  • XML
    34.1123046875Kb
  • HTML
    37.0888671875Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8686/JOE.2018.8686.html;jsessionid=9fmmlkp8neal8.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8686&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Li, S., Haskec, T.A., Xu, L.: ‘Control of HVDC light system using conventional and direct current vector control approaches’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 31063118.
    2. 2)
      • 2. Callavik, M., Blomberg, A., Häfner, J., et al: ‘The hybrid HVDC breaker – an innovation breakthrough enabling reliable HVDC grids’. Technical Paper, ABB Grid System, November 2012.
    3. 3)
      • 3. Meyer, C., Schroder, S., De Doncker, R.W.: ‘Solid-state circuit breakers and current limiters for medium-voltage systems having distributed power systems’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 13331340.
    4. 4)
      • 4. Häfner, J., Jacobson, B.: ‘Protective hybrid HVDC breakers – a key innovation for reliable HVDC grids’. Integrating Supergrids Microgrids Int. Symp., Bologna, Italy, September 2011, pp. 18.
    5. 5)
      • 5. ALSTOM: ‘Unveiling the future energy system: full scale demonstrations to reach 2020 targets’. Available at http://www.twenties-project.eu/system/file/TWENTIES%20EWEA%20SESSION%202%20ALSTOM.pdf, accessed 17 April 2012.
    6. 6)
      • 6. China energy storage news center. Global Energy Interconnection Research Institute developed the world's first 200 kV high voltage DC circuit breaker’. Available at http://www.escn.com.cn/news/show-210890.html, accessed 12 January 2015.
    7. 7)
      • 7. Kontos, E., Rodrigues, S., Pinto, R.T., et al: ‘Optimization of limiting reactors design for DC fault protection of multi-terminal HVDC networks’. Energy Conversion Congress and Exposition, Pittsburgh, PA, USA, September 2014, pp. 53475354.
    8. 8)
      • 8. Deng, F., Chen, Z.: ‘Design of protective inductors for HVDC transmission line within dc grid offshore wind farms’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 7583.
    9. 9)
      • 9. Kim, K., Kim, J.G., Jung, H., et al: ‘Design of a 400 mH 400 A toroid-type HTS DC reactor magnet’, IEEE Trans. Appl. Supercond., 2013, 23, (3), p. 4601104.
    10. 10)
      • 10. Sneath, J., Rajapakse, A.D.: ‘Fault detection and interruption in an earthed HVDC grid using ROCOV and hybrid DC breakers’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 973981.
    11. 11)
      • 11. Hall, J., Cheer, A.: ‘Fault current limiter surge protection device for the power grid based upon zero power consumption ceramic ferrite permanent magnets’. 22nd Int. Conf. Electricity Distribution, Stockholm, Sweden, June 2013, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8686
Loading

Related content

content/journals/10.1049/joe.2018.8686
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address