http://iet.metastore.ingenta.com
1887

access icon openaccess Current-limiting strategy based on PR controller and active power filter for droop controlled microgrid

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/16/JOE.2018.8650.html;jsessionid=laappd46mqx2.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8650&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Xiao, H., Luo, A., Shuai, Z., et al: ‘An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 340347.
    2. 2)
      • 2. Wang, Z., Chen, B., Wang, J., et al: ‘Decentralized energy management system for networked microgrids in grid-connected and islanded modes’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 10971105.
    3. 3)
      • 3. Oureilidis, K.O., Demoulias, C.S.: ‘A fault clearing method in converter-dominated microgrids with conventional protection means’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 46284640.
    4. 4)
      • 4. Nuutinen, P., Peltoniemi, P., Silventoinen, P.: ‘Short-circuit protection in a converter-fed low-voltage distribution network’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 15871597.
    5. 5)
      • 5. Zamani, M.A., Yazdani, A., Sidhu, T.S.: ‘A control strategy for enhanced operation of inverter-based microgrids under transient disturbances and network faults’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 17371747.
    6. 6)
      • 6. Casagrande, E., Woon, W.L., Zeineldin, H.H., et al: ‘A differential sequence component protection scheme for microgrids with inverter-based distributed generators’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 2937.
    7. 7)
      • 7. Liu, Q., Liu, X., Deng, Y., et al: ‘Voltage unbalance and harmonics compensation for islanded microgrid inverters’, IET Power Electron., 2014, 7, (5), pp. 10551063.
    8. 8)
      • 8. Ghanbari, T., Farjah, E.: ‘Development of an efficient solid-state fault current limiter for microgrid’, IEEE Trans. Power Deliv., 2012, 27, (4), pp. 18291834.
    9. 9)
      • 9. Blair, S.M., Booth, C.D., Burt, G.M., et al: ‘Application of multiple resistive superconducting fault-current limiters for fast fault detection in highly interconnected distribution systems’, IEEE Trans. Power Deliv., 2013, 28, (2), pp. 11201127.
    10. 10)
      • 10. Zheng, F., Deng, C., Chen, L., et al: ‘Transient performance improvement of microgrid by a resistive superconducting fault current limiter’, IEEE Trans. Appl. Superconduct., 2015, 25, (3), pp. 15.
    11. 11)
      • 11. Guo, W., Mou, L.: ‘Fault model of inverter-based distributed generator considering flexible control strategy and current limitation’, Proc. CSEE, 2015, 35, (24), pp. 63596367.
    12. 12)
      • 12. Bottrell, N., Green, T.C.: ‘Comparison of current-limiting strategies during fault ride-through of inverters to prevent latch-up and wind-up’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 37863797.
    13. 13)
      • 13. Plet, C.A., Green, T.C.: ‘A method of voltage limiting and distortion avoidance for islanded inverter-fed networks under fault’. Proc. 2011 14th European Conf. Power Electronics and Applications, Birmingham, UK, 2011, pp. 18.
    14. 14)
      • 14. Han, Y., Shen, P., Zhao, X., et al: ‘Control strategies for islanded microgrid using enhanced hierarchical control structure with multiple current-loop damping schemes’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 11391153.
    15. 15)
      • 15. Mehdi, S., Alireza, J., Juan, C.V., et al: ‘Secondary control scheme for voltage unbalance compensation in an islanded droop-controlled microgrid’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 797807.
    16. 16)
      • 16. Weidong, W., Xingxing, D., Youyuan, N., et al: ‘An improved deadbeat control for a three-phase three-line active power filter with current-tracking error compensation’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 20612072.
    17. 17)
      • 17. Yu, Z., Qiming, C., Yinman, C., et al: ‘Nonlinear control strategy of three-phase four-wire shunt active power filter with mid-point capacitor based on hybrid passive theory’, Autom. Electr. Power Syst., 2017, 41, (19), pp. 110119.
    18. 18)
      • 18. Wang, X., Gao, J., Chen, M., et al: ‘Faulty line detection method based on optimized bistable system for distribution network’, IEEE Trans. Ind. Inform., 2018, 14, (4), pp. 13701381.
    19. 19)
      • 19. Wang, X., Song, G., Chang, Z., et al: ‘Faulty feeder detection based on mixed atom dictionary and energy spectrum energy for distribution network’, IET Gener. Transm. Distrib., 2018, 12, (3), pp. 596606.
    20. 20)
      • 20. Wei, X., Wen, B., Yang, D., et al: ‘Fault line detection method based on the improved SVD de-noising and ideal clustering curve for distribution networks’, IET Sci. Meas. Technol., 2018, 12, (2), pp. 262270.
    21. 21)
      • 21. Gao, J., Cheng, Q., Wang, X., et al: ‘Faulty line detection method based on B-spline bistable denoising for distribution network’, Int. Trans. Electr. Energy Syst., 2017, 28, (34), pp. 119.
    22. 22)
      • 22. Haiyuan, H., Longhua, M., Wenming, G.: ‘Adaptabiity of microgrid protection based on fault components’, Autom. Electr. Power Syst., 2016, 40, (3), pp. 9096.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8650
Loading

Related content

content/journals/10.1049/joe.2018.8650
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address