http://iet.metastore.ingenta.com
1887

access icon openaccess Parallel operation of virtual synchronous generators and synchronous generators in a microgrid

  • XML
    84.83984375Kb
  • PDF
    6.472560882568359MB
  • HTML
    90.3671875Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8644/JOE.2018.8644.html;jsessionid=d8f42stnerfl.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8644&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Hou, X., Han, H., Zhong, C., et al: ‘Improvement of transient stability in inverter-based AC microgrid via adaptive virtual inertia’. Energy Conversion Congress and Exposition (ECCE), Milwaukee, USA, September 2016, pp. 16.
    2. 2)
      • 2. Van, T.V., Visscher, K., Diaz, J., et al: ‘Virtual synchronous generator: an element of future grids’. IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), Gothenberg, Sweden, October 2010, pp. 17.
    3. 3)
      • 3. Beck, H.P., Hesse, R.: ‘Virtual synchronous machine’. 9th Int. Conf. on Electrical Power Quality and Utilisation (EPQU), Barcelona, Spain, October 2007, pp. 16.
    4. 4)
      • 4. Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12591267.
    5. 5)
      • 5. D'Arco, S., Suul, J.A.: ‘Virtual synchronous machines—classification of implementations and analysis of equivalence to droop controllers for microgrids’. IEEE Grenoble InPowerTech (POWERTECH), Grenoble, France, June 2013, pp. 17.
    6. 6)
      • 6. Gao, B., Xia, C., Chen, N., et al: ‘Virtual synchronous generator based auxiliary damping control design for the power system with renewable generation’, Energies, 2017, 10, (8), p. 1146.
    7. 7)
      • 7. Zhang, A.G., Zhang, J.H., Jiang, C.: ‘Constant-impedance model of static synchronous series compensator and its double closed loop control strategy’, Power Syst. Technol., 2010, 3, p. 021.
    8. 8)
      • 8. Wang, D., Wu, H.: ‘Application of virtual synchronous generator technology in microgrid’. 8th Int. Power Electronics and Motion Control Conf. (IPEMC-ECCE Asia), Hefei, China, May 2016, pp. 31423148.
    9. 9)
      • 9. Chen, Y., Hesse, R., Turschner, D., et al: ‘Comparison of methods for implementing virtual synchronous machine on inverters’. Int. Conf. on Renewable Energies and Power Quality (ICREPQ'12), Santiago de Compostela, Spain, March 2012, pp. 16.
    10. 10)
      • 10. Li, M., Wang, Y., Xu, N., et al: ‘A consistent dynamic response control strategy for virtual synchronous generator’. IEEE 3rd Int. Future Energy Electronics Conf. and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan, June 2017, pp. 15701574.
    11. 11)
      • 11. Zhang, L., Wang, F., Guo, H., et al: ‘Perturbation influences of parameters on dynamic performance of a virtual synchronous generator’. 43rd Annual Conf. of the IEEE Industrial Electronics Society (IECON), Beijing, China, November 2017, pp. 14051410.
    12. 12)
      • 12. Kirtley, J.Jr.: ‘6.685 electric Machines’ (Massachusetts Institute of Technology: MIT, Cambridge, 2013).
    13. 13)
      • 13. Andersson, G.: ‘Dynamics and control of electric power systems’, Lecture notes (2012), pp. 2270528.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8644
Loading

Related content

content/journals/10.1049/joe.2018.8644
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address