Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Design and implementation of the MMC simulation system in the heterogeneous FPGA-CPU platform

Real-time simulation of a modular multilevel converter (MMC) plays an important role on the area of large-scale power electronics research. The authors propose a real-time MMC simulation system in a heterogeneous computing platform containing the central processing unit (CPU) and field programmable gate array (FPGA). This system decouples the MMC circuits from the grid based on the alternative circuit equivalent model of the MMC bridge arm. Furthermore, the parallel calculation of the equivalent circuits is achieved when the peripheral circuit is realised on the CPU and the MMC arms are realised on FPGA. In addition, a timing optimisation strategy is discussed to reach the timing target requirement. To validate the MMC simulation system, a case study of a grid with 12 MMC bridges and 640 sub-modules per bridge at 2 μs time step on Xilinx Virtex-7 XC7VX690T FPGA is simulated in real time. The real-time simulation results demonstrate high accuracy of the simulation system in comparison to the offline simulation of the original system in the electromagnetic transient program and our design is competitive to recent published works.

References

    1. 1)
      • 6. Dufour, C., Jalili-Marandi, V., Bélanger, J., et al: ‘Power system simulation algorithms for parallel computer architectures’. Proc. of the 2012 PES General Meeting, San Diego, USA, 2012, vol. 1, pp. 2144.
    2. 2)
      • 10. Maguire, T., Warkentin, B., Chen, Y., et alEfficient techniques for real time simulation of MMC systems’. The Int. Conf. on Power Systems Transients, Singapore, 2013, vol. 6, pp. 1820.
    3. 3)
      • 8. Peng, F.Z.: ‘A generalized multilevel inverter topology with self voltage balancing’, IEEE Trans. Ind. Appl., 2001, 37, (2), pp. 611618.
    4. 4)
      • 3. Ouellette, D.S., Geisbrecht, W.J., Wierckx, R.P., et alModelling an impedance relay using a real time digital simulator’. Eighth IEEE Int. Conf. Developments in Power System Protection, Amsterdam, The Netherlands, 2004, vol. 2, pp. 665668.
    5. 5)
      • 7. Chen, Y., Dinavahi, V.: ‘FPGA-based real-time EMTP’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 892902.
    6. 6)
      • 1. Kouro, S., Malinowski, M., Gopakumar, K., et al: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
    7. 7)
      • 13. Tian, P., Liu, C.: ‘Design and experimental verification of the hardware in the loop simulation platform for modular multilevel converter’, Autom. Elecr. Power Syst., 2016, 40, (1), pp. 122128.
    8. 8)
      • 9. Shen, Z., Dinavahi, V.: ‘Real-time device-level transient electrothermal model for modular multilevel converter on FPGA’. IEEE Trans. Power Electron., 2016, 31, (9), pp. 61556168.
    9. 9)
      • 14. Xu, L., Agelidis, V.G.: ‘Active capacitor voltage control of flying capacitor multilevel converters’, IEE Proc. Electr. Power Appl., 2004, 151, (3), pp. 313320.
    10. 10)
      • 11. Saad, H., Ould-Bachir, T., Mahseredjian, J., et al: ‘Real-time simulation of MMCs using CPU and FPGA’, IEEE Trans. Power Electr., 2015, 30, (1), pp. 259267.
    11. 11)
      • 2. Chen, Y., Dinavahi, V.: ‘Multi-FPGA digital hardware design for detailed large-scale real-time electromagnetic transient simulation of power systems’, IET Gener. Transm. Distrib., 2013, 7, (5), pp. 451463.
    12. 12)
      • 12. Liu, C., Lin, X.: ‘The equivalent model of modular multilevel converter sub module based on RTDS’, Autom. Elecr. Power Syst., 2013, 37, (12), pp. 9299.
    13. 13)
      • 4. Meka, R., Sloderbeck, M., Faruque, M.O., et al: ‘FPGA model of a high-frequency power electronic converter in an RTDS power system co-simulation’. Electric Ship Technologies Symp., Arlington, USA, 2013, vol. 25, no. 2, pp. 7175.
    14. 14)
      • 5. Nie, X., Chen, Y., Dinavahi, V.: ‘Real-time transient simulation based on a robust two-layer network equivalent’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 17711781.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8583
Loading

Related content

content/journals/10.1049/joe.2018.8583
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address