http://iet.metastore.ingenta.com
1887

access icon openaccess Bilayer game strategy of regional integrated energy system under multi-agent incomplete information

  • PDF
    2.3348751068115234MB
  • XML
    135.8076171875Kb
  • HTML
    174.87890625Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8571/JOE.2018.8571.html;jsessionid=1u341n1lho7uq.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8571&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Jia, H., Wang, D., Xu, X., et al: ‘Research on some key problems related to integrated energy systems’, Autom. Electr. Power Syst., 2015, 38, (7), pp. 198207.
    2. 2)
      • 2. Wu, J.: ‘The driving force and current situation of European integrated energy system development’, Autom. Electr. Power Syst., 2016, 40, (5), pp. 17.
    3. 3)
      • 3. Yu, X., Xu, X., Chen, S., et al: ‘A brief overview of the integrated energy system and energy internet’, Trans. China Electrotech. Soc., 2016, 31, (1), pp. 113.
    4. 4)
      • 4. Wang, W., Wan, D., Jia, H., et al: ‘Overview of steady state analysis of typical regional comprehensive energy system under the background of energy internet’, Proc. CSEE, 2016, 36, (12), pp. 32923305.
    5. 5)
      • 5. Rashedi, N., Tajeddini, M.A., Kebriaei, H.: ‘Markov game approach for multi-agent competitive bidding strategies in electricity market’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 37563763.
    6. 6)
      • 6. Wang, S.: ‘Generator bidding strategy based on Q learning algorithm on the day-ahead market’, Energy Technol. Econ., 2010, 22, (3), pp. 3439.
    7. 7)
      • 7. Lu, Q., Chen, L., Mei, S.: ‘Typical applications and prospects of game theory in power system’, Proc. CSEE, 2014, 34, (29), pp. 50095017.
    8. 8)
      • 8. Mei, S.: ‘Engineering game theory and application of power system’ (Science Press, Beijing, 2016), pp. 178191.
    9. 9)
      • 9. Moghaddam, I.G., Saniei, M., Mashhour, E.: ‘A comprehensive model for self-scheduling an energy hub to supply cooling, heating and electrical demands of a building’, Energy, 2016, 94, pp. 157170.
    10. 10)
      • 10. Zhou, R., Ran, X., Mao, J., et al: ‘Coordinated optimization of energy saving for distributed CCHP system’, Power Syst. Technol., 2012, 36, (6), pp. 814.
    11. 11)
      • 11. Gu, Z., Kang, C., Chen, X., et al: ‘Operation optimization of integrated power and heat energy systems and the benefit on wind power considering heating network constraints’, Proc. CSEE, 2015, 35, (14), pp. 35963604.
    12. 12)
      • 12. Gu, W., Wang, J., Lu, S., et al: ‘Optimal operation for integrated energy system considering thermal inertia of district heating network and buildings’, Appl. Energy, 2017, 199, pp. 234246.
    13. 13)
      • 13. Herrando, M., Markides, C.N., Hellgardt, K.: ‘A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance’, Appl. Energy, 2014, 122, pp. 288309.
    14. 14)
      • 14. Duan, W., Hu, Z., Wu, S., et al: ‘Economic policy dynamic simulation of power demand based on agent response equilibrium model’, Proc. CSEE, 2014, 34, (7), pp. 12061212.
    15. 15)
      • 15. Tian, J., Hu, Z., Wu, J., et al: ‘Economic power dynamic simulation system based on multi-agent modeling’, Proc. CSEE, 2010, 30, (7), pp. 8591.
    16. 16)
      • 16. Huang, X., Guo, R.: ‘A multi-agent model for power planning in power market environment’, Power Syst. Prot. Control, 2016, 44, (24), pp. 18.
    17. 17)
      • 17. Dehghanpour, K., Nehrir, M.H., Sheppard, J.W., et al: ‘Agent-based modeling in electrical energy markets using dynamic Bayesian networks’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 47444754.
    18. 18)
      • 18. Neshat, N., Amin-Naseri, M.R.: ‘Cleaner power generation through market-driven generation expansion planning: an agent-based hybrid framework of game theory and particle swarm optimization’, J. Clean Prod., 2014, 105, pp. 206217.
    19. 19)
      • 19. Zhou, Z., Zhao, F., Wang, J.: ‘Agent-based electricity market simulation with demand response from commercial buildings’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 580588.
    20. 20)
      • 20. Tang, W., Jain, R.: ‘Dynamic economic dispatch game: the value of storage’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 23502358.
    21. 21)
      • 21. Ruan, W., Wang, B., Li, Y., et al: ‘Study on user response behavior under TOU price’, Power Grid Technol., 2012, 36, (7), pp. 8693.
    22. 22)
      • 22. Gajjar, G.R., Khaparde, S.A., Nagaraju, P.: ‘Application of actor-critic learning algorithm for optimal bidding problem of a Genco’, IEEE Trans. Power Syst., 2003, 18, (1), pp. 1118.
    23. 23)
      • 23. Ragupathi, R., Das, T.K.: ‘A stochastic game approach for modeling wholesale energy bidding in deregulated power market’, IEEE Trans. Power Syst., 2004, 19, (2), pp. 849856.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8571
Loading

Related content

content/journals/10.1049/joe.2018.8571
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address