http://iet.metastore.ingenta.com
1887

access icon openaccess Study on the breakdown characteristics of conductor-plane gap under vegetation fire condition based on the combustion features

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/16/JOE.2018.8498.html;jsessionid=a5snmglklhqb9.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8498&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Wu, T., Ruan, J.J., Cheng, C.: ‘Field observation and experimental investigation on breakdown of air gap of AC transmission line under forest fires’. IEEE Power Eng. Autom. Conf., Wuhan, China, Sept., 2011, pp. 339343.
    2. 2)
      • 2. Zhou, Z.Y., Ai, X., Lu, J.Z., et al: ‘A real-time analysis approach and its application for transmission line trip risk due to wildfire disaster’, Proc. CSEE, 2017, 37, (18), pp. 53215330.
    3. 3)
      • 3. Soulinaris, G.K., Halevidis, C.D., Polykrati, A.D., et al: ‘Evaluation of the thermal stresses and dielectric phenomena in the investigation of the causes of wildfires involving distribution power lines’, Electr. Power Syst. Res., 2014, 117, pp. 7683.
    4. 4)
      • 4. Wu, T., Hu, Y., Ruan, J.J., et al: ‘Air gap breakdown mechanism of model AC transmission line under forest fires’, High Volt. Eng., 2011, 37, (5), pp. 11141120.
    5. 5)
      • 5. Huang, D.C., Li, P., Ruan, J.J., et al: ‘Review on discharge mechanism and breakdown characteristics of transmission line gap under forest fire condition’, High Volt. Eng., 2016, 41, (2), pp. 622632.
    6. 6)
      • 6. Lu, J.Z., Liu, Y., Xu, X.J., et al: ‘Prediction and early warning technology of wildfire nearby overhead transmission lines’, High Volt. Eng., 2017, 43, (1), pp. 314320.
    7. 7)
      • 7. Robledo, M.A., Guzman, E., Hernandez, J.L. ‘Dielectric characteristics of a model transmission line in the presence of fire’, IEEE Trans. Electr. Insul., 1991, 26, (4), pp. 776782.
    8. 8)
      • 8. Fonseca, J.R., Tan, A.L., Silva, R.P., et al: ‘Effects of agricultural fires on the performance of overhead transmission lines’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 687694.
    9. 9)
      • 9. Lanoie, R., Mercure, H.P.: ‘Influence of forest fires on power line insulation’. Int. Symp. High. Volt. Eng. New Orleans, L.A., USA, August 1989, pp. 14.
    10. 10)
      • 10. Ntshangase, Z., Swanson, A., Ijumba, N.M., et al: ‘An empirical model of fire-induced air gap voltage breakdown characteristics under HVDC conditions’. IEEE Africon, Cape Town, South Africa, September 2017, pp. 12831289.
    11. 11)
      • 11. You, F., Chen, H.X., Zhang, L.H., et al: ‘Experimental study on flashover of high-voltage transmission lines induced by wood crib fire’, Proc. CSEE, 2011, 31, (34), pp. 192197.
    12. 12)
      • 12. Mphalea, K., Heron, M.: ‘Measurement of electrical conductivity for a biomass fire’, Int. J. Mole. Sci., 2008, 9, (8), pp. 14161423.
    13. 13)
      • 13. Pu, Z.H., Ruan, J.J., Huang, D.C., et al: ‘Study on the breakdown characteristics of the transmission line gap under forest fire conditions’, Int. Trans. Elecr. Energy Syst., 2014, 25, (11), pp. 27312744.
    14. 14)
      • 14. Pu, Z.H., Ruan, J.J., Wu, T., et al: ‘Influence of particles in flame on the characteristics of gap discharge’, High Volt. Eng., 2015, 40, (1), pp. 103110.
    15. 15)
      • 15. Chen, X.M., Li, P., Ruan, L., et al: ‘Insulation characteristics measurement and analysis of the typical vegetation in the corridor of the transmission lines’, Electr. Meas. Instrum., 2015, 52, (20), pp. 8995.
    16. 16)
      • 16. Wang, Y.M., Wang, Q.M., Wang, X., et al: ‘determination of combustion heat for 61 tree species in Jiangsu’, J. Jiangsu Fore. Sci. Technol., 1992, 18, (2), pp. 612.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8498
Loading

Related content

content/journals/10.1049/joe.2018.8498
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address