http://iet.metastore.ingenta.com
1887

access icon openaccess Discharge voltage prediction of UHV AC transmission line–tower air gaps by a machine learning model

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/16/JOE.2018.8486.html;jsessionid=1q7f2e3v1fath.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8486&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Huang, D.C., Shu, Y.B., Ruan, J.J., et al: ‘Ultra high voltage transmission in China: developments, current status and future prospects’, Proc. IEEE, 2009, 97, (3), pp. 555583.
    2. 2)
      • 2. CIGRE Working Group C4.306, ‘Insulation coordination for UHV AC systems’ (CIGRE, Paris, 2013), pp. 2082.
    3. 3)
      • 3. Liu, Z.Y.: ‘Ultra-high voltage AC/DC Grids’ (Elsevier Inc., Waltham, 2015).
    4. 4)
      • 4. Cortina, R., Garbagnati, E., Pigini, A., et al: ‘Switching impulse strength of phase-to-earth UHV external insulation – research at the 1000 kV project’, IEEE Trans. Power Appar. Syst., 1985, 104, (11), pp. 31613168.
    5. 5)
      • 5. Yamagata, Y., Oe, A., Miyake, K., et al: ‘Phase-to-ground and phase-to-phase sparkover characteristics of external insulation at the entrance of a UHV substation’, IEEE Trans. Power Del., 2002, 17, (1), pp. 223232.
    6. 6)
      • 6. Liao, Y.L., Gao, C., Li, R.H., et al: ‘Long front time switching impulse tests of long air gap in UHV projects at altitude of 2100 m’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (3), pp. 982987.
    7. 7)
      • 7. Hutzler, B., Hutzler-Barre, D.: ‘Leader propagation model for predetermination of switching surge flashover voltage of large air gaps’, IEEE Trans. Power Appar. Syst., 1978, 97, (4), pp. 10871096.
    8. 8)
      • 8. Goelian, N., Lalande, P., Bondiou-Clergerie, A., et al: ‘A simplified model for the simulation of positive-spark development in long air gaps’, J. Phys. D Appl. Phys., 1997, 30, (17), pp. 24412452.
    9. 9)
      • 9. Fofana, I., Beroual, A.: ‘A model for long air gap discharge using an equivalent electrical network’, IEEE Trans. Dielectr. Electr. Insul., 1996, 3, (2), pp. 273282.
    10. 10)
      • 10. Arevalo, L., Wu, D., Jacobson, B.: ‘A consistent approach to estimate the breakdown voltage of high voltage electrodes under positive switching impulses’, J. Appl. Phys., 2013, 114, (8), pp. 083301083308.
    11. 11)
      • 11. IEC 60071-1: ‘Insulation co-ordination – part 1: definitions, principles and rules’, 2011.
    12. 12)
      • 12. IEC 60071-2: ‘Insulation co-ordination – part 2: application guide’, 1996.
    13. 13)
      • 13. IEEE Std 1313.2: ‘IEEE guide for the application of insulation coordination’, 1999.
    14. 14)
      • 14. Paris, L.: ‘Influence of air gap characteristics on line-to-ground switching surge strength’, IEEE Trans. Power Appar. Syst., 1967, 86, (8), pp. 936947.
    15. 15)
      • 15. CIGRE Working Group 33.07, ‘Guidelines for the evaluation of the dielectric strength of external insulation’ (CIGRE, Paris, 1992), pp. 2942.
    16. 16)
      • 16. Gençoğlu, M.T., Cebeci, M.: ‘Investigation of pollution flashover on high voltage insulators using artificial neural network’, Expert Syst. Appl., 2009, 36, (4), pp. 73387345.
    17. 17)
      • 17. Bessedik, S.A., Hadi, H.: ‘Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation’, Electr. Power Syst. Res., 2013, 104, pp. 8992.
    18. 18)
      • 18. Asimakopoulou, G.E., Kontargyri, V.T., Tsekouras, G.J., et al: ‘A fuzzy logic optimization methodology for the estimation of the critical flashover voltage on insulators’, Electr. Power Syst. Res., 2011, 81, (2), pp. 580588.
    19. 19)
      • 19. Ruiz, D., Llovera-Segovia, P., Pomar, V., et al: ‘Analysis of breakdown process at U50 voltage for plane rod discharges by means of neural networks’, J. Electrost., 2013, 71, (3), pp. 336340.
    20. 20)
      • 20. Bourek, Y., Mokhnache, L., Said, N.N., et al: ‘Study of discharge in point-plane air interval using fuzzy logic’, J. Electr. Eng. Technol., 2009, 4, (3), pp. 410417.
    21. 21)
      • 21. Qiu, Z.B., Ruan, J.J., Huang, D.C., et al: ‘A prediction method for breakdown voltage of typical air gaps based on electric field features and support vector machine’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (4), pp. 21252135.
    22. 22)
      • 22. Qiu, Z.B., Ruan, J.J., Huang, D.C., et al: ‘Hybrid prediction of the power frequency breakdown voltage of short air gaps based on orthogonal design and support vector machine’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 795805.
    23. 23)
      • 23. Qiu, Z.B., Ruan, J.J., Huang, C.P., et al: ‘A method for breakdown voltage prediction of short air gaps with atypical electrodes’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 26852694.
    24. 24)
      • 24. Qiu, Z.B., Ruan, J.J., Xu, W.J., et al: ‘Energy storage features and a predictive model for switching impulse flashover voltages of long air gaps’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (5), pp. 27032711.
    25. 25)
      • 25. Vapnik, V.N.: ‘The nature of statistical learning Theory’ (Springer-Verlag, New York, 1995, 2nd edn. 2000).
    26. 26)
      • 26. Abe, S.: ‘Support vector machines for pattern Classification’ (Springer-Verlag London Limited, London, 2005, 2nd edn. 2010).
    27. 27)
      • 27. Chang, C.C., Lin, C.J.: ‘LIBSVM: A library for support vector machines’, ACM Trans. Intel. Syst. Technol., 2011, 2, (3), pp. 127.
    28. 28)
      • 28. Huo, F., Hu, W., Xu, T., et al: ‘Air-gaps flashover characteristics for 1000 kV AC compact tower’, High Volt. Eng., 2011, 37, (8), pp. 18751881.
    29. 29)
      • 29. Huo, F.: ‘Study on insulation characteristics and electric field distribution of long air-gaps for UHV power transmission line’. PhD thesis, Wuhan University, 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8486
Loading

Related content

content/journals/10.1049/joe.2018.8486
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address