http://iet.metastore.ingenta.com
1887

access icon openaccess Static voltage sharing technology of multi-break mechanical switch for hybrid HVDC breaker

  • XML
    41.734375Kb
  • HTML
    37.0419921875Kb
  • PDF
    2.273509979248047MB
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8465/JOE.2018.8465.html;jsessionid=9qigogpn1pscj.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8465&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Belda, N.A., Smeets, R.P.P.: ‘Test circuits for HVDC circuit breakers’, IEEE Trans. Power Deliv., 2017, 32, (1), pp. 285293.
    2. 2)
      • 2. Chondrogiannis, S., Blanco, M.P.: ‘Market integration scheme of a multi-terminal HVDC grid in the north seas’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 24152422.
    3. 3)
      • 3. Wen, W.J., Huang, Y.L., Sun, Y.S., et al: ‘Research on current commutation measures for hybrid DC circuit breakers’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 14561463.
    4. 4)
      • 4. Jovcic, D., Strachan, N.: ‘Offshore wind farm with centralised power conversion and DC interconnection’, IET Gener. Transm. Distrib., 2009, 3, (6), pp. 586595.
    5. 5)
      • 5. Raza, A., Dianguo, X., Yuchao, L., et al: ‘Coordinated operation and control of VSC based multiterminal high voltage DC transmission systems’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 364373.
    6. 6)
      • 6. Akhmatov, V., Callavik, M., Franck, C.M., et al: ‘Technical guidelines and prestandardization work for first HVDC grids’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 327335.
    7. 7)
      • 7. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: an overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602.
    8. 8)
      • 8. Adam, G.P., Williams, B.W.: ‘Multi-pole voltage source converter HVDC transmission systems’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 496507.
    9. 9)
      • 9. Bucher, M.K., Wiget, R., Andersson, G., et al: ‘Multi-terminal HVDC networks-what is the preferred topology?’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 406413.
    10. 10)
      • 10. Franck, C.: ‘HVDC circuit breakers: a review identifying future research needs’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 9981007.
    11. 11)
      • 11. Mokhberdoran, A., Hertem, D.V., Silva, N., et al: ‘Multiport hybrid HVDC circuit breaker’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 309320.
    12. 12)
      • 12. Peng, F., Wang, Z., Deng, Y., et al: ‘Potentials of hybrid HVDC circuit breakers’ application to MMC-HVDC grid’, Power Syst. Technol., 2017, 41, (7), pp. 20922098.
    13. 13)
      • 13. Ali, R., Xu, D., Su, X., et al: ‘A novel multiterminal VSC-HVdc transmission topology for offshore wind farms’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 13161325.
    14. 14)
      • 14. Majumder, R., Auddy, S., Berggren, B., et al: ‘An alternative method to build DC switchyard with hybrid DC breaker for DC grid’, IEEE Trans. Power Deliv., 2017, 32, (2), pp. 713722.
    15. 15)
      • 15. Liu, X.M., Sun, B.L., Wang, E.A.: ‘Influence analysis of double-break structure on electric field distribution of UHV SF6 circuit breaker’, High Volt. Eng., 2014, 40, (6), pp. 17951801.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8465
Loading

Related content

content/journals/10.1049/joe.2018.8465
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address