access icon openaccess Singular value decomposition-based dynamic response analysis of VSC-MTDC/AC systems for renewable energy integration

The dynamic performance of voltage source converter-based multi-terminal high-voltage direct current (VSC-MTDC) grid for large-scale renewable energy integration is becoming a concern. This study proposes a system-level dynamic response model of wind farm (WF)-MTDC-main AC systems, and then analyses the dynamic performance based on the singular value decomposition (SVD) technique. In the modelling, an improved virtual synchronous machine control is developed, and the interaction between AC frequency and DC voltage can be readily described. Using the SVD technique, parameters of the controllers are tuned, thereby making the AC frequency and DC voltage deviations within the limitations. Some oscillation modes of the system are observed and virtual power system stabiliser is proposed to suppress the oscillations. Additionally, the oscillation can be mitigated by emulating capacitance-based inertia response. The efficiency of the proposed model and analysis is verified through the frequency-domain and time-domain results.

Inspec keywords: power grids; voltage-source convertors; singular value decomposition; voltage control; HVDC power convertors; power generation control; machine control; dynamic response; power transmission control; power system stability; HVDC power transmission; wind power plants; synchronous machines

Other keywords: improved virtual synchronous machine control; DC voltage deviations; system oscillation modes; VSC; large-scale renewable energy integration; voltage source converter-based multiterminal high-voltage direct current grid; WF; singular value decomposition-based dynamic response analysis; time-domain analysis; dynamic performance; SVD technique; wind farm-MTDC-main AC systems; frequency-domain analysis; system-level dynamic response model; AC frequency; VSC-MTDC-AC systems; virtual power system stabiliser; capacitance-based inertia response emulation

Subjects: Algebra; Power system control; d.c. transmission; Synchronous machines; Control of electric power systems; Algebra; Voltage control; Power convertors and power supplies to apparatus; Wind power plants

References

    1. 1)
      • 7. Mohammad, A., Rygg, A., Molinas, M.: ‘Self-synchronization of wind farm in an MMC-based HVDC system: a stability investigation’, IEEE Trans. Energy Convers., 2017, 32, (2), pp. 458470.
    2. 2)
      • 15. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1993).
    3. 3)
      • 6. Rakhshani, E., Remon, D., Cantarellas, A.M., et al: ‘Virtual synchronous power strategy for multiple HVDC interconnections of multi-area AGC power systems’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 16651677.
    4. 4)
      • 12. Eriksson, R., Beerten, J., Ghandhari, M.: ‘Optimizing DC voltage droop settings for AC/DC system interactions’, IEEE Trans. Power Deliv., 2014, 29, pp. 362369.
    5. 5)
      • 14. Ye, H., Pei, W., Qi, Z.P.: ‘Analytical modelling of inertial and droop responses from a wind farm for short-term frequency regulation in power systems’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 34143423.
    6. 6)
      • 4. Chen, D., Xu, Y.Z., Huang, A.Q.: ‘Integration of DC micro-grids as virtual synchronous machines into the AC grid’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 74557466.
    7. 7)
      • 11. Prieto-Araujo, E., Egea-Alvarez, A., Fekri, S.: ‘DC voltage droop control design for multi-terminal HVDC systems considering AC and DC grid dynamics’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 575585.
    8. 8)
      • 10. Prieto-Araujo, E., Bianchi, F., Junyent-Ferré, A.: ‘Methodology for droop control dynamic analysis of multi-terminal VSC-HVDC grids for offshore wind farms’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 24762485.
    9. 9)
      • 1. Ming Kong, M., Pei, X.Y., Pang, H., et al: ‘A lifting wavelet-based protection strategy against DC line faults for Zhangbei HVDC grid in China’. Proc. 19th European Conf. on Power Electronics and Applications, Warsaw, Poland, September 2017, pp. 111.
    10. 10)
      • 8. Dehghani, M., Shayanfard, B., Khayatian, A.R.: ‘PMU ranking based on singular value decomposition of dynamic stability matrix’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 22632270.
    11. 11)
      • 13. Akkari, S., Prieto-Araujo, E., Dai, J., et al: ‘Impact of the DC cable models on the SVD analysis of a multi-terminal HVDC system’. Proc. of 2016 Power Systems Computation Conf. (PSCC), Genova, Italy, 2016, pp. 16.
    12. 12)
      • 3. Zhou, J.Z., Ding, H., Fan, S., et al: ‘Impact of short circuit ratio and phase-locked-loop parameters on the small-signal behavior of a VSC-HVDC converter’, IEEE Trans. Power Deliv., 2014, 29, (5), pp. 22872296.
    13. 13)
      • 9. Khadija, K., Mohamed, E.: ‘Structural analysis of voltage stability in power systems integrating wind power’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 37853794.
    14. 14)
      • 5. Li, C.Y., Xu, J.Z., Zhao, C.Y.: ‘A coherency-based equivalence method for MMC inverters using virtual synchronous generator control’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 13691378.
    15. 15)
      • 17. Skogestad, S., Postlethwaite, I.: ‘Multivariable feedback control, analysis and design’ (John Wiley & Sons, New York, 2007).
    16. 16)
      • 16. An, T., Zhou, X.X., Han, D.D., et al,: ‘A DC grid benchmark model for studies of interconnection of power systems’, CSEE J. Power Energy Syst., 2015, 1, (4), pp. 101109.
    17. 17)
      • 2. Pinares, G., Bongiorno, M.: ‘Modeling and analysis of VSC-based HVDC systems for DC network stability studies’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 848856.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8455
Loading

Related content

content/journals/10.1049/joe.2018.8455
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading