access icon openaccess Review of low voltage ride-through technology of doubly-fed induction generator

In recent years, with the increasing of wind power development, the demand for low voltage ride-through (LVRT) technology was proposed to ensure the safe and reliable operation of the power system. The key issue of LVRT strategy for doubly-fed induction generator (DFIG) varies according to the network synchronisation modes. Firstly, the existed LVRT technologies when DFIG is connected to AC network are surveyed. Then relevant literatures about LVRT are summarised and analysed in regard to power surplus of two-terminal system and DC voltage control of multi-terminal system, respectively, when the wind farm is integrated with VSC-high-voltage direct current (HVDC). In the end, the coordinated control strategy of multi-terminal VSC–HVDC system and LVRT technology for islanded system are prospected in this study.

Inspec keywords: HVDC power convertors; power generation reliability; machine control; voltage control; power generation control; asynchronous generators; electric current control; wind power plants; synchronisation; voltage-source convertors

Other keywords: DFIG; AC network; network synchronisation modes; islanded system; wind farm; coordinated control strategy; multiterminal VSC–HVDC system; multiterminal system; doubly-fed induction generator; power system reliability; two-terminal system; wind power development; multiterminal voltage-source convertor-high-voltage direct current system; low voltage ride-through technology; LVRT technologies; DC voltage control

Subjects: Asynchronous machines; Reliability; AC-DC power convertors (rectifiers); DC-AC power convertors (invertors); Wind power plants; Control of electric power systems; Voltage control; Current control

References

    1. 1)
      • 13. Wang, Y., Fu, Y., Su, X., et al: ‘Fault ride-through control strategy of wind farm integrated with VSC-HVDC’, Trans. China Electrotech. Soc., 2013, 28, (12), pp. 150159.
    2. 2)
      • 17. Arulampalam, A., Ramtharan, G., Ekanayake, J.B., et al: ‘Fault ride through operation of a DFIG wind farm connected through VSC-HVDC’. Int. Conf. on Industrial and Information Systems, Mangalore, India, 2010, pp. 520525.
    3. 3)
      • 3. Tang, G.F., He, Z., Pang, H.: ‘Research application and development of VSC-HVDC engineering technology’, Autom. Electr. Power Syst., 2013, 37, (15), pp. 314.
    4. 4)
      • 21. Wang, W., Mike, B: ‘Power flow algorithms for multi-terminal VSC-HVDC with droop control’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 17211730.
    5. 5)
      • 9. Zhu, X., Shi, L., Chen, N., et al: ‘An analysis on low voltage ride-though of wind turbine driven doubly fed induction generator with different resistances and quitting time of crowbar’, Autom. Electr. Power Syst., 2010, 34, (18), pp. 8489.
    6. 6)
      • 7. Ren, Y., Xu, H., Li, J., et al: ‘Research on enhancing low voltage ride-though ability of doubly-fed induction wind turbine generator’ (North China Electric Power University, Beijing, 2011).
    7. 7)
      • 22. Ren, J., Li, K., Liu, H., et al: ‘Coordinated control strategy of VSC-MTDC system based on improved DC voltage-active power characteristic’, Autom. Electr. Power Syst., 2013, 37, (15), pp. 133139.
    8. 8)
      • 28. Ho, Y., Li, Z., Li, Y., et al: ‘Power conversion strategy based on real bipolar mode in VSC-MTDC system’, Autom. Electr. Power Syst., 2017, 41, (19), pp. 95101.
    9. 9)
      • 12. Zhao, X., Wang, Q., Shao, B., et al: ‘Low voltage ride through control strategy and its analysis of doubly fed induction generator’, Power Syst. Prot. Control, 2015, 43, (16), pp. 5764.
    10. 10)
      • 6. Hu, J., Sun, D., He, Y., et al: ‘Modeling and control of DFIG wind energy generation system under grid voltage dip’, Autom. Electr. Power Syst., 2006, 30, (8), pp. 2126.
    11. 11)
      • 19. Dai, S., Zhu, M: ‘Through the control of AC fault VSC-MTDC network of wind farm’, Autom. Electr. Power Syst., 2016, 38, (1), pp. 2630.
    12. 12)
      • 8. Xu, D., Wang, W., Chen, N, et al: ‘Dynamic characteristic analysis of doubly-fed induction generator low voltage ride-though based on crowbar protection’, Proc. CSEE, 2010, 30, (22), pp. 2936.
    13. 13)
      • 27. Xu, J., Jin, Y., Hu, C., et al: ‘Adaptive droop control for multi terminal flexible DC system of offshore wind power integration’, Power Syst. Prot. Control, 2018, 46, (4), pp. 7885.
    14. 14)
      • 10. Yu, F., Liu, Q., Xie, M., et al: ‘A comprehensive low voltage ride through strategy of wind turbine driven doubly-fed induction generator adapted to multi-type faults’, Autom. Electr. Power Syst., 2013, 37, (5), pp. 2328o+133.
    15. 15)
      • 15. Li, Q., Song, Q., Liu, W., et al: ‘A coordinated control strategy for fault ride-through of wind farm integration based on VSC-HVDC’, Power Syst. Technol., 2014, 38, (7), pp. 17391745.
    16. 16)
      • 5. Dong, Y., Yang, Y., Tian, J., et al: ‘Dynamic simulation system for modular multilevel converter based VSC-HVDC’, Autom. Electr. Power Syst., 2014, 38, (11), pp. 7478. DOI: 10.7500/AEPS20130409007.
    17. 17)
      • 25. Haile, S.: ‘Impact of DC line voltage drops on power flow of MTDC using droop control’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14411449.
    18. 18)
      • 16. Xu, L., Yao, L., Sasse, C, et al: ‘Grid integration of large DFIG-based wind farms using VSC transmission’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 976984.
    19. 19)
      • 24. Xu, D., Liu, Y., Wu, J., et al: ‘Review on control strategies of multi-terminal direct current transmission system’, Trans. China Electrotech. Soc., 2015, 30, (17), pp. 112.
    20. 20)
      • 1. Tang, G.F.: ‘HVDC technology based on voltage source converter (HVDC)’, vol. 2 (China Electric Power Press, Beijing, 2010), pp. 1720.
    21. 21)
      • 26. Yazdi, S.S.H., Fathi, S.H., Fathi, S.H., et al: ‘Optimal operation of multiterminal HVDC links connected to offshore wind farms’. 11th Int. Conf. on Electrical Engineering/Electronics, Computer, Tele communications and Information Technology (ECTI-CON), Nakhon Ratchasima, 2014, pp. 16.
    22. 22)
      • 2. Xu, Z., Tu, Q., Min, Y., et al: ‘Flexible DC transmission system’ (Machinery Industry Press, Beijing, 2013), pp. 128132.
    23. 23)
      • 18. Li, X., Song, Q., Liu, W., et al: ‘Impact of fault ride-through methods on wind power generators in a VSC–HVDC system’, Autom. Electr. Power Syst., 2015, 39, (11), pp. 3136o+125.
    24. 24)
      • 4. Li, Y., Jiang, W., Yo, S., et al: ‘System design of Zhoushan multi-terminal VSC-HVDC transmission project’, High Volt. Eng., 2014, 40, (8), pp. 24902496.
    25. 25)
      • 20. Li, W., Tang, G.F., Kang, Y, et al: ‘Improving low voltage ride through capability of wind farm grid-connected via dynamic chopper controlled breaking resistor based MMC-HVDC transmission system’, Power Syst. Technol., 2014, 38, (5), pp. 11271135.
    26. 26)
      • 23. Chen, H., Xu, Z: ‘A novel DC voltage control strategy for VSC based multi-terminal HVDC system’, Autom. Electr. Power Syst., 2006, 30, (19), pp. 2833.
    27. 27)
      • 11. Yang, T., Chi, Y., Zheng, T, et al: ‘LVRT control strategies for DFIG-base plants’, Modern Electr. Power, 2009, 26, (4), pp. 3640.
    28. 28)
      • 14. Wang, Q., Lu, Y., Hu, Z., et al: ‘Fault current suppression method for flexible DC transmission system operating in islanded mode’, Autom. Electr. Power Syst., 2018, 42, (7), pp. 5661, [2018-0321]. Available at http://kns.cnki.net/kcms/detail/32.1180.TP.20180206.1410.006.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8443
Loading

Related content

content/journals/10.1049/joe.2018.8443
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading