http://iet.metastore.ingenta.com
1887

access icon openaccess Review of low voltage ride-through technology of doubly-fed induction generator

  • XML
    41.1005859375Kb
  • HTML
    35.505859375Kb
  • PDF
    926.2939453125Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8443/JOE.2018.8443.html;jsessionid=pujnpif97f5d.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8443&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Tang, G.F.: ‘HVDC technology based on voltage source converter (HVDC)’, vol. 2 (China Electric Power Press, Beijing, 2010), pp. 1720.
    2. 2)
      • 2. Xu, Z., Tu, Q., Min, Y., et al: ‘Flexible DC transmission system’ (Machinery Industry Press, Beijing, 2013), pp. 128132.
    3. 3)
      • 3. Tang, G.F., He, Z., Pang, H.: ‘Research application and development of VSC-HVDC engineering technology’, Autom. Electr. Power Syst., 2013, 37, (15), pp. 314.
    4. 4)
      • 4. Li, Y., Jiang, W., Yo, S., et al: ‘System design of Zhoushan multi-terminal VSC-HVDC transmission project’, High Volt. Eng., 2014, 40, (8), pp. 24902496.
    5. 5)
      • 5. Dong, Y., Yang, Y., Tian, J., et al: ‘Dynamic simulation system for modular multilevel converter based VSC-HVDC’, Autom. Electr. Power Syst., 2014, 38, (11), pp. 7478. DOI: 10.7500/AEPS20130409007.
    6. 6)
      • 6. Hu, J., Sun, D., He, Y., et al: ‘Modeling and control of DFIG wind energy generation system under grid voltage dip’, Autom. Electr. Power Syst., 2006, 30, (8), pp. 2126.
    7. 7)
      • 7. Ren, Y., Xu, H., Li, J., et al: ‘Research on enhancing low voltage ride-though ability of doubly-fed induction wind turbine generator’ (North China Electric Power University, Beijing, 2011).
    8. 8)
      • 8. Xu, D., Wang, W., Chen, N, et al: ‘Dynamic characteristic analysis of doubly-fed induction generator low voltage ride-though based on crowbar protection’, Proc. CSEE, 2010, 30, (22), pp. 2936.
    9. 9)
      • 9. Zhu, X., Shi, L., Chen, N., et al: ‘An analysis on low voltage ride-though of wind turbine driven doubly fed induction generator with different resistances and quitting time of crowbar’, Autom. Electr. Power Syst., 2010, 34, (18), pp. 8489.
    10. 10)
      • 10. Yu, F., Liu, Q., Xie, M., et al: ‘A comprehensive low voltage ride through strategy of wind turbine driven doubly-fed induction generator adapted to multi-type faults’, Autom. Electr. Power Syst., 2013, 37, (5), pp. 2328o+133.
    11. 11)
      • 11. Yang, T., Chi, Y., Zheng, T, et al: ‘LVRT control strategies for DFIG-base plants’, Modern Electr. Power, 2009, 26, (4), pp. 3640.
    12. 12)
      • 12. Zhao, X., Wang, Q., Shao, B., et al: ‘Low voltage ride through control strategy and its analysis of doubly fed induction generator’, Power Syst. Prot. Control, 2015, 43, (16), pp. 5764.
    13. 13)
      • 13. Wang, Y., Fu, Y., Su, X., et al: ‘Fault ride-through control strategy of wind farm integrated with VSC-HVDC’, Trans. China Electrotech. Soc., 2013, 28, (12), pp. 150159.
    14. 14)
      • 14. Wang, Q., Lu, Y., Hu, Z., et al: ‘Fault current suppression method for flexible DC transmission system operating in islanded mode’, Autom. Electr. Power Syst., 2018, 42, (7), pp. 5661, [2018-0321]. Available at http://kns.cnki.net/kcms/detail/32.1180.TP.20180206.1410.006.html.
    15. 15)
      • 15. Li, Q., Song, Q., Liu, W., et al: ‘A coordinated control strategy for fault ride-through of wind farm integration based on VSC-HVDC’, Power Syst. Technol., 2014, 38, (7), pp. 17391745.
    16. 16)
      • 16. Xu, L., Yao, L., Sasse, C, et al: ‘Grid integration of large DFIG-based wind farms using VSC transmission’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 976984.
    17. 17)
      • 17. Arulampalam, A., Ramtharan, G., Ekanayake, J.B., et al: ‘Fault ride through operation of a DFIG wind farm connected through VSC-HVDC’. Int. Conf. on Industrial and Information Systems, Mangalore, India, 2010, pp. 520525.
    18. 18)
      • 18. Li, X., Song, Q., Liu, W., et al: ‘Impact of fault ride-through methods on wind power generators in a VSC–HVDC system’, Autom. Electr. Power Syst., 2015, 39, (11), pp. 3136o+125.
    19. 19)
      • 19. Dai, S., Zhu, M: ‘Through the control of AC fault VSC-MTDC network of wind farm’, Autom. Electr. Power Syst., 2016, 38, (1), pp. 2630.
    20. 20)
      • 20. Li, W., Tang, G.F., Kang, Y, et al: ‘Improving low voltage ride through capability of wind farm grid-connected via dynamic chopper controlled breaking resistor based MMC-HVDC transmission system’, Power Syst. Technol., 2014, 38, (5), pp. 11271135.
    21. 21)
      • 21. Wang, W., Mike, B: ‘Power flow algorithms for multi-terminal VSC-HVDC with droop control’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 17211730.
    22. 22)
      • 22. Ren, J., Li, K., Liu, H., et al: ‘Coordinated control strategy of VSC-MTDC system based on improved DC voltage-active power characteristic’, Autom. Electr. Power Syst., 2013, 37, (15), pp. 133139.
    23. 23)
      • 23. Chen, H., Xu, Z: ‘A novel DC voltage control strategy for VSC based multi-terminal HVDC system’, Autom. Electr. Power Syst., 2006, 30, (19), pp. 2833.
    24. 24)
      • 24. Xu, D., Liu, Y., Wu, J., et al: ‘Review on control strategies of multi-terminal direct current transmission system’, Trans. China Electrotech. Soc., 2015, 30, (17), pp. 112.
    25. 25)
      • 25. Haile, S.: ‘Impact of DC line voltage drops on power flow of MTDC using droop control’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 14411449.
    26. 26)
      • 26. Yazdi, S.S.H., Fathi, S.H., Fathi, S.H., et al: ‘Optimal operation of multiterminal HVDC links connected to offshore wind farms’. 11th Int. Conf. on Electrical Engineering/Electronics, Computer, Tele communications and Information Technology (ECTI-CON), Nakhon Ratchasima, 2014, pp. 16.
    27. 27)
      • 27. Xu, J., Jin, Y., Hu, C., et al: ‘Adaptive droop control for multi terminal flexible DC system of offshore wind power integration’, Power Syst. Prot. Control, 2018, 46, (4), pp. 7885.
    28. 28)
      • 28. Ho, Y., Li, Z., Li, Y., et al: ‘Power conversion strategy based on real bipolar mode in VSC-MTDC system’, Autom. Electr. Power Syst., 2017, 41, (19), pp. 95101.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8443
Loading

Related content

content/journals/10.1049/joe.2018.8443
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address