http://iet.metastore.ingenta.com
1887

access icon openaccess Energy storage-based control of multi-terminal DC grid to eliminate the fluctuations of renewable energy

  • HTML
    49.4814453125Kb
  • XML
    44.6103515625Kb
  • PDF
    2.9646453857421875MB
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/joe.2018.8440/JOE.2018.8440.html;jsessionid=sp3lsd253umo.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8440&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Bianchi, F.D., Domnguez-Garcia, J.L.: ‘Coordinated frequency control using MT-HVDC grids with wind power plants’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 213220.
    2. 2)
      • 2. Zhang, L., Sun, K., Xing, Y., et al: ‘A modular grid connected photovoltaic generation system based on DC bus’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 523531.
    3. 3)
      • 3. Telaretti, E., Dusonchet, L.: ‘Stationary battery technologies in the US: development trends and prospects’, Renew. Sustain. Energy Rev., 2017, 75, pp. 380392.
    4. 4)
      • 4. Arrillaga, J., Liu, Y.H., Watson, N.R.: ‘Flexible power transmission: the HVDC options’ (John Wiley & Sons Ltd, Chichester, 2007).
    5. 5)
      • 5. Sun, W., Yao, L.Z., Li, Y., et al: ‘Study on operation control strategies of DC grid with multi-voltage level considering large offshore wind farm grid integration’, Proc. CSEE, 2015, 35, (4), pp. 776785.
    6. 6)
      • 6. Jovcic, D., Van Hertem, D., Linden, K., et al: ‘Feasibility of DC transmission networks’. 2011 2nd IEEE PES Int. Conf. and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), Manchester, United Kingdom, 2011, pp. 18.
    7. 7)
      • 7. Wang, H.J., Jiang, Q.Y.: ‘An overview of control and configuration of energy storage system used for wind power fluctuation mitigation’, Power Syst. Technol., 2014, 38, (19), pp. 126135.
    8. 8)
      • 8. Lei, M.Y., Yang, Z.L., Wang, Y.B., et al: ‘Design of energy storage control strategy to improve the PV system power quality’. IECON 2016 42nd Annual Conf. of the IEEE Industrial Electronics Society, Florence, 2016, pp. 20222027.
    9. 9)
      • 9. Guerrero, J.M., Vasquez, J.C., Matas, J., et al: ‘Hierarchical control of droop-controlled AC and DC microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2010, 58, (1), pp. 158172.
    10. 10)
      • 10. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    11. 11)
      • 11. Merabet, A., Ahmed, K.T., Ibrahim, H., et al: ‘Energy management and control system for laboratory scale microgrid based wind-pV-battery’, IEEE Trans. Sustain. Energy, 2017, 8, (1), pp. 145154.
    12. 12)
      • 12. Gowaid, I.A., Elserougi, A.A., Abdel-Khalik, A.S., et al: ‘A series flywheel architecture for power levelling and mitigation of DC voltage transients in multi-terminal HVDC grids’, IETGener. Transm. Distrib., 2014, 8, (12), pp. 19511959.
    13. 13)
      • 13. Carrizosa, M.J., Arzandé, A., Navas, F.D., et al: ‘A control strategy for multi-terminal DC grids with renewable production and storage devices’, IEEE Trans. Sustain. Energy, 2017, PP, (99), pp. 11.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8440
Loading

Related content

content/journals/10.1049/joe.2018.8440
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address