Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Corona characteristics of conductor with TiO2 hydrophilic film subjected to DC high voltage

Water drops on the surface of conductors influence the ambient electric fields and decrease corona inception voltage. A conductor coated with TiO2 film was developed to prevent effects of droplets. The corona inception voltage of conductors in different conditions was measured. The experiments were designed to study effects of three factors including UV-light, the position of water drops, and mass fraction of TiO2 on corona discharge. The influences on the three factors to the corona inception discharge were summarised. Different processes of corona occurred when a water drop on upper or lower surface of the conductor. The contact angle is smaller when the conductor is coated with the paint containing TiO2 because TiO2 is hydrophilic under UV-light. UV-light can improve TiO2's hydrophilia. The ingredients of the paint are insulated. These ingredients prevent the adsorption of space charge and enlarge ionisation layers, thus the corona discharge will be restrained. With the increase of TiO2's mass fraction under the UV-light, the impact of water drops to discharge is further inhibited and the corona inception discharge voltage is increased.

References

    1. 1)
      • 3. Pfeiffer, M., Franck, C.M.: ‘Impact of conductor surface type and rain intensity on HVDC corona losses’, IEEE Trans. Power Deliv., 2015, 30, (5), pp. 22842292.
    2. 2)
      • 5. Yi, Y., Zhang, C.Y., Wang, L.M., et al: ‘Conductor surface conditions effects on the Ion-flow field of long-term operating conductors of the HVDC transmission line’, IEEE Trans. Power Deliv., 2017, 32, (5), pp. 21712178.
    3. 3)
      • 6. Fujii, O., Honsali, K., Mizuno, Y., et al: ‘A basic study on the effect of voltage stress on a water droplet on a silicone rubber surface’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (1), pp. 116122.
    4. 4)
      • 13. Foran, P.S., Boxall, C., Denison, K.R.: ‘Photoinduced superhydrophilicity: a kinetic study of time dependent photoinduced contact angle changes on TiO2 surfaces’, Langmuir, 2012, 28, (51), pp. 1764717655.
    5. 5)
      • 12. Bian, X.M., Wang, L., Liu, Y., et al: ‘High altitude effect on corona inception voltages of DC power transmission conductors based on the mobile corona cage’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 19711973.
    6. 6)
      • 10. Euvananont, C., Junin, C., Inpor, K., et al: ‘Tio2 optical coating layers for self-cleaning applications’, Ceram. Int., 2008, 34, (4), pp. 10671071.
    7. 7)
      • 2. Newell, H.H., Liao, T.W., Warburton, F.W.: ‘Corona and RI caused by particles on or near EHV conductors: II - foul weather’, IEEE Trans. Power Appl. Syst., 1969, PAS-87, (4), pp. 911927.
    8. 8)
      • 14. Oss, C.J.: ‘Use of the combined Lifshitz-van Der Waals and Lewis acid-base approaches in determining the apolar and polar contributions to surface and interfacial tensions and free energies’, J. Adhes. Sci. Technol., 2002, 16, (6), pp. 669677.
    9. 9)
      • 1. Chen, L., Bian, X.M., Wang, L., et al: ‘Effect of rain drops on corona discharge in alternating current transmission lines with a corona cage’, Jpn. J. Appl. Phys., 2012, 51, (9), p. 09MG02.
    10. 10)
      • 4. Sarathi, R., Mishra, P., Gautam, R., et al: ‘Understanding the influence of water droplet initiated discharges on damage caused to corona-aged silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (4), pp. 24212431.
    11. 11)
      • 8. Wang, R., Hashimoto, K., Fujishima, A.: ‘Photocatalytic activity and charaterization of the Sol-gel derived Ph-doped TiO2 thin films’, Nature, 1997, 388, p. 431.
    12. 12)
      • 7. Bian, X.M., Wang, L.M., MacAlpine, J.M.K., et al: ‘Positive corona inception voltages and corona currents for air at various pressures and humidities’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (1), pp. 6370.
    13. 13)
      • 15. Chang, X.S., Ba, D.C., Wen, L.S., et al: ‘Surface energy calculating of TiO2 thin film’. Proc. 8th Vacuum Metallurgy and Surface Engineering Conf., Liaoning, China, 2007, pp. 209213.
    14. 14)
      • 11. Takatal, Y., Hidakal, S., Masuda, M, et al: ‘Thermal behaviour of WO3 and WO3/TiO2 materials’, J. Energy Res., 2003, 27, p. 111.
    15. 15)
      • 9. Du, Y.K., Gan, Y.Q., Yang, P., et al: ‘Cyclic voltammetry and contact angle measurement studies of the Mo(VI) ions doped TiO2 thin films’, Mater. Chem. Phys., 2007, 103, (2–3), pp. 446449.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8424
Loading

Related content

content/journals/10.1049/joe.2018.8424
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address