http://iet.metastore.ingenta.com
1887

access icon openaccess Design and test of a magnetic saturation-type fault current limiter

Loading full text...

Full text loading...

/deliver/fulltext/joe/2019/16/JOE.2018.8409.html;jsessionid=cbkso23qqeck.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8409&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Baran, M.E., Mahajan, N.R.: ‘DC distribution for industrial systems: opportunities and challenges’, IEEE Trans. Ind. Appl., 2003, 39, (6), pp. 15961601.
    2. 2)
      • 2. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: an overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602.
    3. 3)
      • 3. Prabhu, N., Padiyar, K. R.: ‘Investigation of subsynchronous resonance with VSC-based HVDC transmission systems’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 433440.
    4. 4)
      • 4. Elserougi, A. A., Abdel-Khalik, A. S., Massoud, A. M., et al: ‘A new protection scheme for HVDC converters against DC-side faults with current suppression capability’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 15691577.
    5. 5)
      • 5. Franck, C.M.: ‘HVDC circuit breakers: a review identifying future research needs’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 9981007.
    6. 6)
      • 6. Li, X., Song, Q., Liu, W., et al: ‘Protection of nonpermanent faults on DC overhead lines in MMC-based HVDC systems’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 483490.
    7. 7)
      • 7. Catlett, R., Anderson, J., Chassereau, L.: ‘Three-cycle breaker applications’, Ind. Appl. Mag. IEEE, 2005, 11, (5), pp. 3343.
    8. 8)
      • 8. IEEE Application Guide for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis. IEEE Standard C37.010e-1985, 2000.
    9. 9)
      • 9. Davidson, C. C., Trainer, D. R.: ‘Innovative concepts for hybrid multi-level converters for HVDC power transmission’. The 9th IET Int. Conf. on AC and DC Power Transmission, London, UK, 2010, pp. 15.
    10. 10)
      • 10. Marquardt, R.: ‘Modular multilevel converter topologies with DC-short circuit current limitation’. The IEEE Int. Conf. on Power Electronics and ECCE Asia, Jeju, South Korea, 2011, pp. 14251431.
    11. 11)
      • 11. Schmitt, D., Wang, Y., Weyh, T., et al: ‘DC-side fault current management in extended multiterminal-HVDC-grids’. The 2012 9th Int. Multi-Conf. on Systems, Signals and Devices, Chemnitz, Germany, 2012, pp. 15.
    12. 12)
      • 12. Hassanpoor, A., Hafner, J., Jacobson, B.: ‘Technical assessment of load commutation switch in hybrid HVDC breaker’, IEEE Trans. Power Electron., 2014, 30, (10), pp. 36673673.
    13. 13)
      • 13. Thuries, E., Pham, V. D., Laumond, Y., et al: ‘Towards the superconducting fault current limiter’, IEEE Trans. Power Deliv., 1991, 6, (2), pp. 801808.
    14. 14)
      • 14. Shi, J., Tang, Y., Chen, L., et al: ‘The application of active superconducting DC fault current limiter in hybrid AC/DC power supply systems’, IEEE Trans. Appl. Supercond., 2008, 18, (2), pp. 672675.
    15. 15)
      • 15. Guo, Z., Sun, H., Bai, B., et al: ‘Experiment and simulation of PTC used in fault current limiter’. The 2010 China Int. Conf. on Electricity Distribution, Nanjing, China, 2010, pp. 19.
    16. 16)
      • 16. Chen, G., Jiang, D., Lu, Z., et al: ‘A new proposal for solid state fault current limiter and its control strategies’. The Power Engineering Society General Meeting, Denver, USA, 2004, pp. 14681473.
    17. 17)
      • 17. Bourne, J., Schupbach, M., Carr, J., et al: ‘Initial development of a solid-state fault current limiter for naval power systems protection’. The Electric Ship Technologies Symp., Baltimore, USA, 2009, pp. 491498.
    18. 18)
      • 18. Mukhopadhyay, S. C., Dawson, F. P., Iwahara, M., et al: ‘A novel compact magnetic current limiter for three phase applications’, IEEE Trans. Magn., 2000, 36, (5), pp. 35683570.
    19. 19)
      • 19. Jin, J. X., Dou, S. X., Cook, C., et al: ‘Magnetic saturable reactor type HTS fault current limiter for electrical application[J]’, Physica C, 2000, 34, (3), pp. 26292630.
    20. 20)
      • 20. Abbott, S. B., Robinson, D. A., Perera, S., et al: ‘Simulation of HTS saturable core-type FCLs for MV distribution systems[J]’, IEEE Trans. Power Deliv., 2006, 21, (2), pp. 10131018.
    21. 21)
      • 21. Slemon, G.R.: ‘Magnetoelectric devices-transducer transformer and machines’ (John Wiley & Sons, New Jersey, 1966), pp. 1564.
    22. 22)
      • 22. Fink, J. H., Baker, W. R., Owren, H. M.: ‘Analysis and application of a transformer core that acts as an arc snubber’, IEEE Trans. Plasma Sci., 1980, 8, (1), pp. 3338.
    23. 23)
      • 23. Li, G., Wang, H., Cao, L.: ‘The engineering design of NB snubber’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (4), pp. 10971103.
    24. 24)
      • 24. Xie, F., Li, G., Cheng, D.: ‘Analysis and development of a high performance core snubber based on deltamax’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (4), pp. 10561061.
    25. 25)
      • 25. Qu, L., Li, G., Xie, F., et al: ‘Modeling, simulation, and analysis of the HV snubber’, IEEE Trans. Plasma Sci., 2015, 43, (2), pp. 603609.
    26. 26)
      • 26. Watanabe, K., Mizuno, M., Nakajima, S., et al: ‘Development of a high performance core snubber for high power neutral beam injectors’, Rev. Sci. Instrum., 1998, 69, (12), pp. 41364141.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8409
Loading

Related content

content/journals/10.1049/joe.2018.8409
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address