Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Pumped energy storage system technology and its AC–DC interface topology, modelling and control analysis: a review

Pumped-storage hydropower plants can contribute to a better integration of intermittent renewable energy and to balance generation and demand in real time by providing rapid response generation. The utilisation of variable-speed pump-turbine units with a doubly fed induction machine is being progressively applied due to its overall efficiency and high level of operating flexibility. This study presents state-of-the-art pumped energy storage system technology and its AC–DC interface topology, modelling, simulation and control analysis. It also provides information on the existing global capacities, technological development, topologies and control strategies of the pumped-storage system. This report also outlines the analysis of dynamic performances of the system. It also attempts to recommend the future works in this area. This study concludes that pumped storage is the most suitable technology for small autonomous island grids and massive energy storage, where the energy efficiency of pumped storage varies in practice. Around the world, the size of the pumped-storage plant mostly lies in the range of a small size to 3060 MW. The back-to-back voltage source converter topology is mostly conducted due to its significant features. Due to its imperative features, the vector control strategy is widely used. The pumped-storage plant is dedicated to power management and stability regulation of grid and isolated power systems.

References

    1. 1)
      • 28. Koritarove, V.: ‘Modeling and analysis of value of advanced pumped storage hydropower in the U.S.’ (Center for Energy, Environmental, and Economic Systems Analysis,Argonne National Laboratory, Nashville, TN, 2014).
    2. 2)
      • 14. Popular Science: ‘A ten-mile storage battery’. Available at: https://books.google.com/books.
    3. 3)
      • 27. Abdalla, O.H., Han, M., Liu, C.: ‘Multi-level converter based variable speed pump storage for wind power compensation’. Proc. Int. Conf. Information Science, Electronics and Electrical Engineering, Sapporo, Japan, 2014, pp. 14971501.
    4. 4)
      • 20. Bendl, J., Chombt, M., Schreier, L.: ‘Adjustable-speed operation of doubly fed machines in pumped storage power plants’. Proc. 9th Int. Conf. Electrical Machines and Drives, 1999, pp. 223227.
    5. 5)
      • 21. Pronin, M., Shonin, O., Vorontsov, A., et al: ‘A pumped storage power plant with double-fed induction machine and cascaded frequency converter’. Proc. 14th European Conf. Power Electronics and Applications, Birmingham, UK, 2011, pp. 19.
    6. 6)
      • 15. I.H. Association: ‘2017 key trends in hydropower’ (International Hydropower Association, London, 2017).
    7. 7)
      • 22. Suul, J.A., Uhlen, K., Undeland, T.: ‘Wind power integration in isolated grids enabled by variable speed pumped storage hydropower plant’. Proc. IEEE Int. Conf. Sustainable Energy Technologies, Singapore, 2008, pp. 399404.
    8. 8)
      • 26. Belhadji, L., Bacha, S., Munteanu, I., et al: ‘Control of a small variable speed pumped-storage power plant’. Proc. 4th Int. Conf. Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 2013, pp. 787792.
    9. 9)
      • 38. Song, X., Teshager, B.G., Han, M., et al: ‘Stability and control of a grid integrated DFIM based variable speed pumped storage system’. Proc. Int. Electrical and Energy Conf., Beijing, China, October 2017, pp. 175181.
    10. 10)
      • 34. Djeriri, Y., Meroufel, A., Massoum, A., et al: ‘A comparative study between field oriented control strategy and direct power control strategy for DFIG’, J. Elect. Eng., 2015.
    11. 11)
      • 33. Pena, R., Clare, J.C., Asher, G.M.: ‘Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation’, IEE Proc. – Electr. Power Appl., 1996, 143, pp. 231241.
    12. 12)
      • 13. Steimer, P.K., Senturk, O., Aubert, S., et al: ‘Converter-fed synchronous machine for pumped hydro storage plants’. Proc. IEEE Energy Conversion Congress and Exposition, 2014, pp. 45614567.
    13. 13)
      • 11. Lie, X., Cartwright, P.: ‘Direct active and reactive power control of DFIG for wind energy generation’, IEEE Trans. Energy Convers., 2006, 21, pp. 750758.
    14. 14)
      • 30. Pannatier, Y., Nicolet, C., Kawkabani, B., et al: ‘Transient behavior of variable speed pumped-turbine units’. Proc. 24th IAHR Symp. Hydraulic Machinery and Systems, Foz Do Iguassu, Brazil, 27–31 October 2008.
    15. 15)
      • 31. PDH Center: ‘Variable speed drives in electrical energy management’, 2018. Available at: https://pdhonline.com/courses/.
    16. 16)
      • 17. Wikipedia: ‘List of pumped-storage hydroelectric power stations’, 2018. Available at: https://en.wikipedia.org/wiki/Pumped_Storage_hydroelectricity.
    17. 17)
      • 32. Merzoug, M., Naceri, F.: ‘Comparison of field-oriented control and direct torque control for permanent magnet synchronous motor (PMSM)’, Int. J. Electr. Comput. Energ. Electron. Commun. Eng., 2008, 2, pp. 17961802.
    18. 18)
      • 41. Demiray, T., Andersson, G., Busarello, L.: ‘Evaluation study for the simulation of power system transients using dynamic phasor models’. Proc. IEEE/PES Transmission and Distribution Conf. and Exposition, Bogota, Colombia, 2008, pp. 16.
    19. 19)
      • 37. Pronin, M.V., Shonin, O.B., Vorontsov, A.G., et al: ‘Features of a drive system for pump-storage plant applications based on the use of double-fed induction machine with a multistage-multilevel frequency converter’. Proc. 15th Int. Power Electronics and Motion Control Conf., 2012, pp. DS1b.7-1DS1b.7-8.
    20. 20)
      • 1. Bocquel, A., Janning, J.: ‘Analysis of a 300 MW variable speed drive for pump-storage plant applications’. Proc. European Conf. Power Electronics and Applications, Dresden, Germany, 2005, pp. 110.
    21. 21)
      • 43. Mahdi Johar, A.R., Miveh, M.R., Mirsaeidi, S.: ‘Comparison of DFIG and synchronous machine for storage hydro-power generation’, Int. J. Pure Appl. Sci. Technol., 2011, 7, pp. 4858.
    22. 22)
      • 8. Janning, J., Schwery, A.: ‘Next generation variable speed pump-storage power stations’. Proc. 13th European Conf. Power Electronics and Applications, 2009, pp. 110.
    23. 23)
      • 42. Hannan, M.A., Chan, K.W.: ‘Modern power systems transients studies using dynamic phasor models’. Proc. Int. Conf. Power System Technology, Singapore, 2004, vol. 2, pp. 14691473.
    24. 24)
      • 29. Nagura, O., Yoshida, M.: ‘Transient behavior analysis of adjustable speed pumped storage System’ (Hydro Vision International, Sacramento, CA, 2011).
    25. 25)
      • 5. Vladimir, K., Tao, G., Erik, E., et al: ‘Modeling and simulation of advanced pumped-storage hydropower technologies and their contributions to the power system’. Proc. HydroVision, September 2014.
    26. 26)
      • 6. Simond, J.-J., Sapin, A., Schafer, D.: ‘Expected benefits of adjustable speed pumped storage in the European network’, Infoscience, 1999.
    27. 27)
      • 19. Mohan, N., Undeland, T.M., Robbins, W.P.: ‘Power electronics: converters, applications, and design’, vol. 2 (John Wiley & Sons Ltd., Hoboken, NJ, 2003).
    28. 28)
      • 4. Katsaprakakis, D.A., Christakis, D.G.: ‘Seawater pumped storage systems and offshore wind parks in islands with low onshore wind potential. A fundamental case study’, Energy, 2014, 66, pp. 470486.
    29. 29)
      • 18. Rashid, M.H.: ‘Power electronics handbook’ (Academic Press, Canada, 2001).
    30. 30)
      • 7. Furuya, S., Taguchi, T., Kusunoki, K., et al: ‘Successful achievement in a variable speed pumped storage power system at Yagisawa power plant’. Conf. Record of the Power Conversion Conf., Yokohama, Japan, 1993, pp. 603608.
    31. 31)
      • 25. Saiju, R., Koutnik, J., Krueger, K.: ‘Dynamic analysis of start-up strategies of AC excited double Fed induction machine for pumped storage power plant’. Proc. 13th European Conf. Power Electronics and Applications, Barcelona, Spain, 2009, pp. 18.
    32. 32)
      • 2. Rehman, S., Al-Hadhrami, L.M., Mahbub Alam, M.: ‘Pumped hydro energy storage system: a technological review’, Renew. Sustain. Energy Rev., 2015, 44, pp. 586598.
    33. 33)
      • 10. Chen, W.: ‘Comparison of doubly-fed induction generator and brushless doubly-fed reluctance generator for wind energy applications’ (School of Electrical and Electronic Engineering, Newcastle University, 2014).
    34. 34)
      • 23. Boldea, I.: ‘Control of electric generators: a review’. Proc. 29th Annual Conf. IEEE Industrial Electronics Society, Roanoke, USA, 2003, vol. 1, pp. 972980.
    35. 35)
      • 3. McLean, E., Kearney, D.: ‘An evaluation of seawater pumped hydro storage for regulating the export of renewable energy to the national grid’, Energy Proc., 2014, 46.
    36. 36)
      • 35. Kundur, P.: ‘Power system stability and Control’ (McGraw-Hill, Inc., USA, 1994).
    37. 37)
      • 44. Teshager, B.G., Han, M., Meng, Z., et al: ‘Phasor model simulation of a grid integrated variable speed pumped storage system’, J. Eng., 2017, 2017, pp. 10021009.
    38. 38)
      • 12. Johar, M., Radan, A., Reza Miveh, M., et al: ‘Comparison of DFIG and synchronous machine for hydro-power generation’, Int. J. Pure Appl. Sci. Technol., 2011, 7, pp. 4858.
    39. 39)
      • 40. Maghamizadeh, M., Fathi, S.H.: ‘Virtual flux based direct power control of a three-phase rectifier connected to an LCL filter with sensorless active damping’. Proc. 7th Power Electronics and Drive Systems Technologies Conf., Tehran, Iran, 2016, pp. 476481.
    40. 40)
      • 9. Yazdani, A., Iravani, R.: ‘Voltage-sourced converters in power systems; modeling, control, and applications’ (John Wiley & Sons, Inc., Hoboken, 2010).
    41. 41)
      • 36. Datta, R., Ranganathan, V.T.: ‘Direct power control of grid-connected wound rotor induction machine without rotor position sensors’, IEEE Trans. Power Electron., 2001, 16, pp. 390399.
    42. 42)
      • 16. Nagura, O., Higuchi, M., Kiyohito Tani, D.E., et al: ‘Hitachi's adjustable-speed pumped-storage system contributing to prevention of global warming’, 2010, Available at: http://www.hitachi.com.
    43. 43)
      • 39. Li, W., Joós, G., Abbey, C.: ‘Wind power impact on system frequency deviation and an ESS based power filtering algorithm solution’. Proc. IEEE PES Power Systems Conf. and Exposition, 2006, pp. 20772084.
    44. 44)
      • 24. Xin, C., Minxiao, H., Chao, Z.: ‘Power control analysis for variable speed pumped storage with full-size converter’. Proc. 41st Annual Conf. IEEE Industrial Electronics Society, Yokohama, Japan, 2015, pp. 001327001332.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8379
Loading

Related content

content/journals/10.1049/joe.2018.8379
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address