http://iet.metastore.ingenta.com
1887

access icon openaccess Multi-criterion integrated method for low-frequency oscillation-type identification

  • XML
    80.705078125Kb
  • HTML
    103.8544921875Kb
  • PDF
    1.7439680099487305MB
Loading full text...

Full text loading...

/deliver/fulltext/joe/2018/17/JOE.2018.8353.html;jsessionid=2ha6pri26e1c.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fjoe.2018.8353&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Ju, L., Wei, Y., Jinyu, W., et al: ‘Active power oscillation property classification of electric power systems based on SVM’, J. Appl. Math., 2014, 14, article ID 218647, pp. 19, [Online] Available: http://dx.doi.org/10.1155/2014/218647.
    2. 2)
      • 2. Ju, L., Jin, W., Wei, Y., et al: ‘Characteristic analysis and identification method of negative damping and forced power oscillation’, Power Syst. Prot. Control, 2016, 44, (19), pp. 7784.
    3. 3)
      • 4. Ruichao, X., Daniel, T.: ‘Distinguishing features of natural and forced oscillations’. IEEE Power Energy Society General Meeting (PESGM 2015), Denver, CO, USA, July 26–30, 2015.
    4. 4)
      • 5. Lixin, W., Guowei, C., Deyou, Y., et al: ‘Identification method of low-frequency oscillation type based on vibration waveform data and coherent spectrum’, Electr. Power Constr., 2016, 37, (10), pp. 108113.
    5. 5)
      • 6. Hua, Y., Youbin, S., Yutian, L.: ‘Forced power oscillation response analysis and oscillation type discrimination’, Proc. CSEE, 2013, 33, (34), pp. 197204.
    6. 6)
      • 7. Dong, Y., Luhua, X., Liang, W., et al: ‘Response analysis and type discrimination of power system forced oscillation’. 5th Int Conf. Electric Utility Deregulation Restructuring Power Technologies, Changsha, China, November 26–29, 2015.
    7. 7)
      • 8. Chao, W., Chao, L., Yingduo, H., et al: ‘Identification of mode shape based on ambient signals and ARMA-P method’, Autom. Electr. Power Syst., 2010, 34, (06), pp. 16.
    8. 8)
      • 9. Chao, W.: ‘An ambient data based closed-loop identification method of power system’, Autom. Electr. Power Syst., 2013, 37, (07), pp. 3135.
    9. 9)
      • 10. Yuanhang, D., Lei, C., Yong, M., et al: ‘Low frequency oscillation parameter identification based on the random response theory’. 10th IET Int. Conf. Advances Power System Control, Operation and Management, Hong Kong, China, November 8–12, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/joe.2018.8353
Loading

Related content

content/journals/10.1049/joe.2018.8353
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address